Loading…
Rice yield formation under high day and night temperatures—A prerequisite to ensure future food security
Increasing temperatures resulting from climate change dramatically impact rice crop production in Asia. Depending on the specific stage of rice development, heat stress reduces tiller/panicle number, decreases grain number per plant and lower grain weight, thus negatively impacting yield formation....
Saved in:
Published in: | Plant, cell and environment cell and environment, 2020-07, Vol.43 (7), p.1595-1608 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4198-d88aecab55f54f8c1a9fc12f0958388ba22b0f66c55f5bdbe498b0b8b27d34bf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4198-d88aecab55f54f8c1a9fc12f0958388ba22b0f66c55f5bdbe498b0b8b27d34bf3 |
container_end_page | 1608 |
container_issue | 7 |
container_start_page | 1595 |
container_title | Plant, cell and environment |
container_volume | 43 |
creator | Xu, Jiemeng Henry, Amelia Sreenivasulu, Nese |
description | Increasing temperatures resulting from climate change dramatically impact rice crop production in Asia. Depending on the specific stage of rice development, heat stress reduces tiller/panicle number, decreases grain number per plant and lower grain weight, thus negatively impacting yield formation. Hence improving rice crop tolerance to heat stress in terms of sustaining yield stability under high day temperature (HDT), high night temperature (HNT), or combined high day and night temperature (HDNT) will bolster future food security. In this review article, we highlight the phenological alterations caused by heat and the underlying molecular‐physiological and genetic mechanisms operating under different types of heat conditions (HDT, HNT, and HDNT) to understand heat tolerance. Based on our synthesis of HDT, HNT, and HDNT effects on rice yield components, we outline future breeding strategies to contribute to sustained food security under climate change.
In this review article we highlighted the phenological implications of heat stress and summarized the molecular physiological implications affecting HDT, HNT, and HDNT tolerance with a holistic approach of physiology, genomics, and systems‐genetics approaches. We outlined future breeding strategies to address sustained food security under climate change. |
doi_str_mv | 10.1111/pce.13748 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2417238314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417238314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4198-d88aecab55f54f8c1a9fc12f0958388ba22b0f66c55f5bdbe498b0b8b27d34bf3</originalsourceid><addsrcrecordid>eNp1kMlKBDEQhoMoOi4HX0ACnjy0Zuvp9FGGcQFBET03WSqaYaa7TdJI33wIn9AnMTrqzboUVfXxFfwIHVJySnOd9QZOKa-E3EATyqdlwYkgm2hCqCBFVdV0B-3GuCAkL6p6G-1wRikTjE3Q4t4bwKOHpcWuCyuVfNfiobUQ8LN_esZWjVi1Frd5SDjBqoeg0hAgfry9n-M-QICXwUefAKcOQxvzDbshfbeusziCGYJP4z7acmoZ4eCn76HHi_nD7Kq4ub28np3fFEbQWhZWSgVG6bJ0pXDSUFU7Q5kjdSm5lFoxpombTs0XoK0GUUtNtNSsslxox_fQ8drbh-5lgJiaRTeENr9smKAV45JTkamTNWVCF2MA1_TBr1QYG0qar1SbnGrznWpmj36Mg16B_SN_Y8zA2Rp49UsY_zc1d7P5WvkJGraD0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417238314</pqid></control><display><type>article</type><title>Rice yield formation under high day and night temperatures—A prerequisite to ensure future food security</title><source>Wiley</source><creator>Xu, Jiemeng ; Henry, Amelia ; Sreenivasulu, Nese</creator><creatorcontrib>Xu, Jiemeng ; Henry, Amelia ; Sreenivasulu, Nese</creatorcontrib><description>Increasing temperatures resulting from climate change dramatically impact rice crop production in Asia. Depending on the specific stage of rice development, heat stress reduces tiller/panicle number, decreases grain number per plant and lower grain weight, thus negatively impacting yield formation. Hence improving rice crop tolerance to heat stress in terms of sustaining yield stability under high day temperature (HDT), high night temperature (HNT), or combined high day and night temperature (HDNT) will bolster future food security. In this review article, we highlight the phenological alterations caused by heat and the underlying molecular‐physiological and genetic mechanisms operating under different types of heat conditions (HDT, HNT, and HDNT) to understand heat tolerance. Based on our synthesis of HDT, HNT, and HDNT effects on rice yield components, we outline future breeding strategies to contribute to sustained food security under climate change.
In this review article we highlighted the phenological implications of heat stress and summarized the molecular physiological implications affecting HDT, HNT, and HDNT tolerance with a holistic approach of physiology, genomics, and systems‐genetics approaches. We outlined future breeding strategies to address sustained food security under climate change.</description><identifier>ISSN: 0140-7791</identifier><identifier>EISSN: 1365-3040</identifier><identifier>DOI: 10.1111/pce.13748</identifier><identifier>PMID: 32112422</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Agricultural production ; Cereal crops ; Climate Change ; Crop production ; Crop Production - methods ; Crop yield ; Developmental stages ; Environmental impact ; Food ; Food security ; Food Security - methods ; genetics and genomics ; Grain ; Heat ; Heat stress ; Heat tolerance ; Heat-Shock Response ; hormones ; molecular physiology ; Night ; Oryza - growth & development ; Plant Breeding ; Rice ; rice yield ; Temperature</subject><ispartof>Plant, cell and environment, 2020-07, Vol.43 (7), p.1595-1608</ispartof><rights>2020 John Wiley & Sons Ltd.</rights><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4198-d88aecab55f54f8c1a9fc12f0958388ba22b0f66c55f5bdbe498b0b8b27d34bf3</citedby><cites>FETCH-LOGICAL-c4198-d88aecab55f54f8c1a9fc12f0958388ba22b0f66c55f5bdbe498b0b8b27d34bf3</cites><orcidid>0000-0002-3998-038X ; 0000-0001-6255-5480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32112422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Jiemeng</creatorcontrib><creatorcontrib>Henry, Amelia</creatorcontrib><creatorcontrib>Sreenivasulu, Nese</creatorcontrib><title>Rice yield formation under high day and night temperatures—A prerequisite to ensure future food security</title><title>Plant, cell and environment</title><addtitle>Plant Cell Environ</addtitle><description>Increasing temperatures resulting from climate change dramatically impact rice crop production in Asia. Depending on the specific stage of rice development, heat stress reduces tiller/panicle number, decreases grain number per plant and lower grain weight, thus negatively impacting yield formation. Hence improving rice crop tolerance to heat stress in terms of sustaining yield stability under high day temperature (HDT), high night temperature (HNT), or combined high day and night temperature (HDNT) will bolster future food security. In this review article, we highlight the phenological alterations caused by heat and the underlying molecular‐physiological and genetic mechanisms operating under different types of heat conditions (HDT, HNT, and HDNT) to understand heat tolerance. Based on our synthesis of HDT, HNT, and HDNT effects on rice yield components, we outline future breeding strategies to contribute to sustained food security under climate change.
In this review article we highlighted the phenological implications of heat stress and summarized the molecular physiological implications affecting HDT, HNT, and HDNT tolerance with a holistic approach of physiology, genomics, and systems‐genetics approaches. We outlined future breeding strategies to address sustained food security under climate change.</description><subject>Agricultural production</subject><subject>Cereal crops</subject><subject>Climate Change</subject><subject>Crop production</subject><subject>Crop Production - methods</subject><subject>Crop yield</subject><subject>Developmental stages</subject><subject>Environmental impact</subject><subject>Food</subject><subject>Food security</subject><subject>Food Security - methods</subject><subject>genetics and genomics</subject><subject>Grain</subject><subject>Heat</subject><subject>Heat stress</subject><subject>Heat tolerance</subject><subject>Heat-Shock Response</subject><subject>hormones</subject><subject>molecular physiology</subject><subject>Night</subject><subject>Oryza - growth & development</subject><subject>Plant Breeding</subject><subject>Rice</subject><subject>rice yield</subject><subject>Temperature</subject><issn>0140-7791</issn><issn>1365-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMlKBDEQhoMoOi4HX0ACnjy0Zuvp9FGGcQFBET03WSqaYaa7TdJI33wIn9AnMTrqzboUVfXxFfwIHVJySnOd9QZOKa-E3EATyqdlwYkgm2hCqCBFVdV0B-3GuCAkL6p6G-1wRikTjE3Q4t4bwKOHpcWuCyuVfNfiobUQ8LN_esZWjVi1Frd5SDjBqoeg0hAgfry9n-M-QICXwUefAKcOQxvzDbshfbeusziCGYJP4z7acmoZ4eCn76HHi_nD7Kq4ub28np3fFEbQWhZWSgVG6bJ0pXDSUFU7Q5kjdSm5lFoxpombTs0XoK0GUUtNtNSsslxox_fQ8drbh-5lgJiaRTeENr9smKAV45JTkamTNWVCF2MA1_TBr1QYG0qar1SbnGrznWpmj36Mg16B_SN_Y8zA2Rp49UsY_zc1d7P5WvkJGraD0A</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Xu, Jiemeng</creator><creator>Henry, Amelia</creator><creator>Sreenivasulu, Nese</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-3998-038X</orcidid><orcidid>https://orcid.org/0000-0001-6255-5480</orcidid></search><sort><creationdate>202007</creationdate><title>Rice yield formation under high day and night temperatures—A prerequisite to ensure future food security</title><author>Xu, Jiemeng ; Henry, Amelia ; Sreenivasulu, Nese</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4198-d88aecab55f54f8c1a9fc12f0958388ba22b0f66c55f5bdbe498b0b8b27d34bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural production</topic><topic>Cereal crops</topic><topic>Climate Change</topic><topic>Crop production</topic><topic>Crop Production - methods</topic><topic>Crop yield</topic><topic>Developmental stages</topic><topic>Environmental impact</topic><topic>Food</topic><topic>Food security</topic><topic>Food Security - methods</topic><topic>genetics and genomics</topic><topic>Grain</topic><topic>Heat</topic><topic>Heat stress</topic><topic>Heat tolerance</topic><topic>Heat-Shock Response</topic><topic>hormones</topic><topic>molecular physiology</topic><topic>Night</topic><topic>Oryza - growth & development</topic><topic>Plant Breeding</topic><topic>Rice</topic><topic>rice yield</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jiemeng</creatorcontrib><creatorcontrib>Henry, Amelia</creatorcontrib><creatorcontrib>Sreenivasulu, Nese</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Plant, cell and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jiemeng</au><au>Henry, Amelia</au><au>Sreenivasulu, Nese</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rice yield formation under high day and night temperatures—A prerequisite to ensure future food security</atitle><jtitle>Plant, cell and environment</jtitle><addtitle>Plant Cell Environ</addtitle><date>2020-07</date><risdate>2020</risdate><volume>43</volume><issue>7</issue><spage>1595</spage><epage>1608</epage><pages>1595-1608</pages><issn>0140-7791</issn><eissn>1365-3040</eissn><abstract>Increasing temperatures resulting from climate change dramatically impact rice crop production in Asia. Depending on the specific stage of rice development, heat stress reduces tiller/panicle number, decreases grain number per plant and lower grain weight, thus negatively impacting yield formation. Hence improving rice crop tolerance to heat stress in terms of sustaining yield stability under high day temperature (HDT), high night temperature (HNT), or combined high day and night temperature (HDNT) will bolster future food security. In this review article, we highlight the phenological alterations caused by heat and the underlying molecular‐physiological and genetic mechanisms operating under different types of heat conditions (HDT, HNT, and HDNT) to understand heat tolerance. Based on our synthesis of HDT, HNT, and HDNT effects on rice yield components, we outline future breeding strategies to contribute to sustained food security under climate change.
In this review article we highlighted the phenological implications of heat stress and summarized the molecular physiological implications affecting HDT, HNT, and HDNT tolerance with a holistic approach of physiology, genomics, and systems‐genetics approaches. We outlined future breeding strategies to address sustained food security under climate change.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>32112422</pmid><doi>10.1111/pce.13748</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3998-038X</orcidid><orcidid>https://orcid.org/0000-0001-6255-5480</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-7791 |
ispartof | Plant, cell and environment, 2020-07, Vol.43 (7), p.1595-1608 |
issn | 0140-7791 1365-3040 |
language | eng |
recordid | cdi_proquest_journals_2417238314 |
source | Wiley |
subjects | Agricultural production Cereal crops Climate Change Crop production Crop Production - methods Crop yield Developmental stages Environmental impact Food Food security Food Security - methods genetics and genomics Grain Heat Heat stress Heat tolerance Heat-Shock Response hormones molecular physiology Night Oryza - growth & development Plant Breeding Rice rice yield Temperature |
title | Rice yield formation under high day and night temperatures—A prerequisite to ensure future food security |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A36%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rice%20yield%20formation%20under%20high%20day%20and%20night%20temperatures%E2%80%94A%20prerequisite%20to%20ensure%20future%20food%20security&rft.jtitle=Plant,%20cell%20and%20environment&rft.au=Xu,%20Jiemeng&rft.date=2020-07&rft.volume=43&rft.issue=7&rft.spage=1595&rft.epage=1608&rft.pages=1595-1608&rft.issn=0140-7791&rft.eissn=1365-3040&rft_id=info:doi/10.1111/pce.13748&rft_dat=%3Cproquest_cross%3E2417238314%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4198-d88aecab55f54f8c1a9fc12f0958388ba22b0f66c55f5bdbe498b0b8b27d34bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2417238314&rft_id=info:pmid/32112422&rfr_iscdi=true |