Loading…
Plasma‐modified CNFs, GPs, and their mixtures for enhanced polypropylene thermal conductivity
Low thermal conductivity of polypropylene (PP) is a key factor in limiting its use for the manufacture of solar heaters. To overcome this problem, in the present work, two different methods were tested to increase the thermal conductivity of a PP matrix by increasing the dispersion and compatibility...
Saved in:
Published in: | Journal of applied polymer science 2020-10, Vol.137 (38), p.n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Low thermal conductivity of polypropylene (PP) is a key factor in limiting its use for the manufacture of solar heaters. To overcome this problem, in the present work, two different methods were tested to increase the thermal conductivity of a PP matrix by increasing the dispersion and compatibility between PP and carbon nanoparticles (CNPs). In the first method, CNPs modified superficially by plasma of propylene were used, and in the second, mixtures of CNPs (carbon nanofibers and graphene platelets in 9:1, 8:2, and 7:3 ratios) were used. Dispersion and compatibility between PP and CNPs were tested by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The results show that both methodologies increase the dispersion and compatibility and, therefore, the thermal conductivity of the PP matrix (0.14 W m−1 K−1), which reached up 0.90 W m−1 K−1. It was also observed that dispersion is a key factor in high concentrations (5 wt/wt%) of CNPs to obtain high thermal conductivity and compatibility in low concentrations (1 wt/wt%). Finally, only a synergistic effect was observed at 1 wt/wt% when using surface‐modified CNPs by plasma and at 5 wt/wt% when the CNPs were used without surface treatment. |
---|---|
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/app.49138 |