Loading…
Plasma‐modified CNFs, GPs, and their mixtures for enhanced polypropylene thermal conductivity
Low thermal conductivity of polypropylene (PP) is a key factor in limiting its use for the manufacture of solar heaters. To overcome this problem, in the present work, two different methods were tested to increase the thermal conductivity of a PP matrix by increasing the dispersion and compatibility...
Saved in:
Published in: | Journal of applied polymer science 2020-10, Vol.137 (38), p.n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3348-9d319ee8ce4f0c0afe711ac8195a16e6c83f6e341ae4c3cdd9ddaf6a6432ee7d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3348-9d319ee8ce4f0c0afe711ac8195a16e6c83f6e341ae4c3cdd9ddaf6a6432ee7d3 |
container_end_page | n/a |
container_issue | 38 |
container_start_page | |
container_title | Journal of applied polymer science |
container_volume | 137 |
creator | Covarrubias‐Gordillo, Carlos Andrés Soriano‐Corral, Florentino Ávila‐Orta, Carlos Alberto Fonseca‐Florido, Heidi Andrea González‐Morones, Pablo Cruz‐Delgado, Víctor Javier Cabello‐Alvarado, Christian Javier |
description | Low thermal conductivity of polypropylene (PP) is a key factor in limiting its use for the manufacture of solar heaters. To overcome this problem, in the present work, two different methods were tested to increase the thermal conductivity of a PP matrix by increasing the dispersion and compatibility between PP and carbon nanoparticles (CNPs). In the first method, CNPs modified superficially by plasma of propylene were used, and in the second, mixtures of CNPs (carbon nanofibers and graphene platelets in 9:1, 8:2, and 7:3 ratios) were used. Dispersion and compatibility between PP and CNPs were tested by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The results show that both methodologies increase the dispersion and compatibility and, therefore, the thermal conductivity of the PP matrix (0.14 W m−1 K−1), which reached up 0.90 W m−1 K−1. It was also observed that dispersion is a key factor in high concentrations (5 wt/wt%) of CNPs to obtain high thermal conductivity and compatibility in low concentrations (1 wt/wt%). Finally, only a synergistic effect was observed at 1 wt/wt% when using surface‐modified CNPs by plasma and at 5 wt/wt% when the CNPs were used without surface treatment. |
doi_str_mv | 10.1002/app.49138 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2420461620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420461620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3348-9d319ee8ce4f0c0afe711ac8195a16e6c83f6e341ae4c3cdd9ddaf6a6432ee7d3</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgUQpDLxBJCYk0tqx68ZjVdGCVEEGmC3LPlZd5YadANl4BJ6RJ8EQVhafwd-56EfokuAZwTibq7adMUFofoQmBItlyniWH6NJ_CNpLsTiFJ2FcMCYkAXmEySLUoVKfX18Vo1x1oFJ1g-bcJNsi_io2iTdHpxPKvfe9R5CYhufQL1XtY60bcqh9U07lFDDj_SVKhPd1KbXnXt13XCOTqwqA1z81Sl63tw-re_S3eP2fr3apZpSlqfCUCIAcg3MYo2VhSUhSudELBThwHVOLQfKiAKmqTZGGKMsV5zRDGBp6BRdjXPjOS89hE4emt7XcaXMWIYZJzzDUV2PSvsmBA9Wtt5Vyg-SYPmTn4z5yd_8op2P9s2VMPwP5aooxo5v3Ex0Rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420461620</pqid></control><display><type>article</type><title>Plasma‐modified CNFs, GPs, and their mixtures for enhanced polypropylene thermal conductivity</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Covarrubias‐Gordillo, Carlos Andrés ; Soriano‐Corral, Florentino ; Ávila‐Orta, Carlos Alberto ; Fonseca‐Florido, Heidi Andrea ; González‐Morones, Pablo ; Cruz‐Delgado, Víctor Javier ; Cabello‐Alvarado, Christian Javier</creator><creatorcontrib>Covarrubias‐Gordillo, Carlos Andrés ; Soriano‐Corral, Florentino ; Ávila‐Orta, Carlos Alberto ; Fonseca‐Florido, Heidi Andrea ; González‐Morones, Pablo ; Cruz‐Delgado, Víctor Javier ; Cabello‐Alvarado, Christian Javier</creatorcontrib><description>Low thermal conductivity of polypropylene (PP) is a key factor in limiting its use for the manufacture of solar heaters. To overcome this problem, in the present work, two different methods were tested to increase the thermal conductivity of a PP matrix by increasing the dispersion and compatibility between PP and carbon nanoparticles (CNPs). In the first method, CNPs modified superficially by plasma of propylene were used, and in the second, mixtures of CNPs (carbon nanofibers and graphene platelets in 9:1, 8:2, and 7:3 ratios) were used. Dispersion and compatibility between PP and CNPs were tested by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The results show that both methodologies increase the dispersion and compatibility and, therefore, the thermal conductivity of the PP matrix (0.14 W m−1 K−1), which reached up 0.90 W m−1 K−1. It was also observed that dispersion is a key factor in high concentrations (5 wt/wt%) of CNPs to obtain high thermal conductivity and compatibility in low concentrations (1 wt/wt%). Finally, only a synergistic effect was observed at 1 wt/wt% when using surface‐modified CNPs by plasma and at 5 wt/wt% when the CNPs were used without surface treatment.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.49138</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Carbon fibers ; Compatibility ; Conducting polymers ; Dispersion ; Electron microscopy ; Grafting ; Graphene ; Graphene and fullerenes ; Heat conductivity ; Heat transfer ; Low concentrations ; Materials science ; Microscopy ; Nanofibers ; Nanoparticles ; Nanostructured polymers ; Nanotubes ; Platelets (materials) ; Polymers ; Polypropylene ; Propylene ; Raman spectroscopy ; Surface treatment ; Synergistic effect ; Thermal conductivity ; Thermal properties</subject><ispartof>Journal of applied polymer science, 2020-10, Vol.137 (38), p.n/a</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3348-9d319ee8ce4f0c0afe711ac8195a16e6c83f6e341ae4c3cdd9ddaf6a6432ee7d3</citedby><cites>FETCH-LOGICAL-c3348-9d319ee8ce4f0c0afe711ac8195a16e6c83f6e341ae4c3cdd9ddaf6a6432ee7d3</cites><orcidid>0000-0002-2820-0958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Covarrubias‐Gordillo, Carlos Andrés</creatorcontrib><creatorcontrib>Soriano‐Corral, Florentino</creatorcontrib><creatorcontrib>Ávila‐Orta, Carlos Alberto</creatorcontrib><creatorcontrib>Fonseca‐Florido, Heidi Andrea</creatorcontrib><creatorcontrib>González‐Morones, Pablo</creatorcontrib><creatorcontrib>Cruz‐Delgado, Víctor Javier</creatorcontrib><creatorcontrib>Cabello‐Alvarado, Christian Javier</creatorcontrib><title>Plasma‐modified CNFs, GPs, and their mixtures for enhanced polypropylene thermal conductivity</title><title>Journal of applied polymer science</title><description>Low thermal conductivity of polypropylene (PP) is a key factor in limiting its use for the manufacture of solar heaters. To overcome this problem, in the present work, two different methods were tested to increase the thermal conductivity of a PP matrix by increasing the dispersion and compatibility between PP and carbon nanoparticles (CNPs). In the first method, CNPs modified superficially by plasma of propylene were used, and in the second, mixtures of CNPs (carbon nanofibers and graphene platelets in 9:1, 8:2, and 7:3 ratios) were used. Dispersion and compatibility between PP and CNPs were tested by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The results show that both methodologies increase the dispersion and compatibility and, therefore, the thermal conductivity of the PP matrix (0.14 W m−1 K−1), which reached up 0.90 W m−1 K−1. It was also observed that dispersion is a key factor in high concentrations (5 wt/wt%) of CNPs to obtain high thermal conductivity and compatibility in low concentrations (1 wt/wt%). Finally, only a synergistic effect was observed at 1 wt/wt% when using surface‐modified CNPs by plasma and at 5 wt/wt% when the CNPs were used without surface treatment.</description><subject>Carbon fibers</subject><subject>Compatibility</subject><subject>Conducting polymers</subject><subject>Dispersion</subject><subject>Electron microscopy</subject><subject>Grafting</subject><subject>Graphene</subject><subject>Graphene and fullerenes</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Low concentrations</subject><subject>Materials science</subject><subject>Microscopy</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Nanostructured polymers</subject><subject>Nanotubes</subject><subject>Platelets (materials)</subject><subject>Polymers</subject><subject>Polypropylene</subject><subject>Propylene</subject><subject>Raman spectroscopy</subject><subject>Surface treatment</subject><subject>Synergistic effect</subject><subject>Thermal conductivity</subject><subject>Thermal properties</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10LtOwzAUBmALgUQpDLxBJCYk0tqx68ZjVdGCVEEGmC3LPlZd5YadANl4BJ6RJ8EQVhafwd-56EfokuAZwTibq7adMUFofoQmBItlyniWH6NJ_CNpLsTiFJ2FcMCYkAXmEySLUoVKfX18Vo1x1oFJ1g-bcJNsi_io2iTdHpxPKvfe9R5CYhufQL1XtY60bcqh9U07lFDDj_SVKhPd1KbXnXt13XCOTqwqA1z81Sl63tw-re_S3eP2fr3apZpSlqfCUCIAcg3MYo2VhSUhSudELBThwHVOLQfKiAKmqTZGGKMsV5zRDGBp6BRdjXPjOS89hE4emt7XcaXMWIYZJzzDUV2PSvsmBA9Wtt5Vyg-SYPmTn4z5yd_8op2P9s2VMPwP5aooxo5v3Ex0Rw</recordid><startdate>20201010</startdate><enddate>20201010</enddate><creator>Covarrubias‐Gordillo, Carlos Andrés</creator><creator>Soriano‐Corral, Florentino</creator><creator>Ávila‐Orta, Carlos Alberto</creator><creator>Fonseca‐Florido, Heidi Andrea</creator><creator>González‐Morones, Pablo</creator><creator>Cruz‐Delgado, Víctor Javier</creator><creator>Cabello‐Alvarado, Christian Javier</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2820-0958</orcidid></search><sort><creationdate>20201010</creationdate><title>Plasma‐modified CNFs, GPs, and their mixtures for enhanced polypropylene thermal conductivity</title><author>Covarrubias‐Gordillo, Carlos Andrés ; Soriano‐Corral, Florentino ; Ávila‐Orta, Carlos Alberto ; Fonseca‐Florido, Heidi Andrea ; González‐Morones, Pablo ; Cruz‐Delgado, Víctor Javier ; Cabello‐Alvarado, Christian Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3348-9d319ee8ce4f0c0afe711ac8195a16e6c83f6e341ae4c3cdd9ddaf6a6432ee7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon fibers</topic><topic>Compatibility</topic><topic>Conducting polymers</topic><topic>Dispersion</topic><topic>Electron microscopy</topic><topic>Grafting</topic><topic>Graphene</topic><topic>Graphene and fullerenes</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Low concentrations</topic><topic>Materials science</topic><topic>Microscopy</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Nanostructured polymers</topic><topic>Nanotubes</topic><topic>Platelets (materials)</topic><topic>Polymers</topic><topic>Polypropylene</topic><topic>Propylene</topic><topic>Raman spectroscopy</topic><topic>Surface treatment</topic><topic>Synergistic effect</topic><topic>Thermal conductivity</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Covarrubias‐Gordillo, Carlos Andrés</creatorcontrib><creatorcontrib>Soriano‐Corral, Florentino</creatorcontrib><creatorcontrib>Ávila‐Orta, Carlos Alberto</creatorcontrib><creatorcontrib>Fonseca‐Florido, Heidi Andrea</creatorcontrib><creatorcontrib>González‐Morones, Pablo</creatorcontrib><creatorcontrib>Cruz‐Delgado, Víctor Javier</creatorcontrib><creatorcontrib>Cabello‐Alvarado, Christian Javier</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Covarrubias‐Gordillo, Carlos Andrés</au><au>Soriano‐Corral, Florentino</au><au>Ávila‐Orta, Carlos Alberto</au><au>Fonseca‐Florido, Heidi Andrea</au><au>González‐Morones, Pablo</au><au>Cruz‐Delgado, Víctor Javier</au><au>Cabello‐Alvarado, Christian Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma‐modified CNFs, GPs, and their mixtures for enhanced polypropylene thermal conductivity</atitle><jtitle>Journal of applied polymer science</jtitle><date>2020-10-10</date><risdate>2020</risdate><volume>137</volume><issue>38</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>Low thermal conductivity of polypropylene (PP) is a key factor in limiting its use for the manufacture of solar heaters. To overcome this problem, in the present work, two different methods were tested to increase the thermal conductivity of a PP matrix by increasing the dispersion and compatibility between PP and carbon nanoparticles (CNPs). In the first method, CNPs modified superficially by plasma of propylene were used, and in the second, mixtures of CNPs (carbon nanofibers and graphene platelets in 9:1, 8:2, and 7:3 ratios) were used. Dispersion and compatibility between PP and CNPs were tested by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The results show that both methodologies increase the dispersion and compatibility and, therefore, the thermal conductivity of the PP matrix (0.14 W m−1 K−1), which reached up 0.90 W m−1 K−1. It was also observed that dispersion is a key factor in high concentrations (5 wt/wt%) of CNPs to obtain high thermal conductivity and compatibility in low concentrations (1 wt/wt%). Finally, only a synergistic effect was observed at 1 wt/wt% when using surface‐modified CNPs by plasma and at 5 wt/wt% when the CNPs were used without surface treatment.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/app.49138</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2820-0958</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2020-10, Vol.137 (38), p.n/a |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_journals_2420461620 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Carbon fibers Compatibility Conducting polymers Dispersion Electron microscopy Grafting Graphene Graphene and fullerenes Heat conductivity Heat transfer Low concentrations Materials science Microscopy Nanofibers Nanoparticles Nanostructured polymers Nanotubes Platelets (materials) Polymers Polypropylene Propylene Raman spectroscopy Surface treatment Synergistic effect Thermal conductivity Thermal properties |
title | Plasma‐modified CNFs, GPs, and their mixtures for enhanced polypropylene thermal conductivity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A47%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma%E2%80%90modified%20CNFs,%20GPs,%20and%20their%20mixtures%20for%20enhanced%20polypropylene%20thermal%20conductivity&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Covarrubias%E2%80%90Gordillo,%20Carlos%20Andr%C3%A9s&rft.date=2020-10-10&rft.volume=137&rft.issue=38&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.49138&rft_dat=%3Cproquest_cross%3E2420461620%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3348-9d319ee8ce4f0c0afe711ac8195a16e6c83f6e341ae4c3cdd9ddaf6a6432ee7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2420461620&rft_id=info:pmid/&rfr_iscdi=true |