Loading…

Plasma‐modified CNFs, GPs, and their mixtures for enhanced polypropylene thermal conductivity

Low thermal conductivity of polypropylene (PP) is a key factor in limiting its use for the manufacture of solar heaters. To overcome this problem, in the present work, two different methods were tested to increase the thermal conductivity of a PP matrix by increasing the dispersion and compatibility...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2020-10, Vol.137 (38), p.n/a
Main Authors: Covarrubias‐Gordillo, Carlos Andrés, Soriano‐Corral, Florentino, Ávila‐Orta, Carlos Alberto, Fonseca‐Florido, Heidi Andrea, González‐Morones, Pablo, Cruz‐Delgado, Víctor Javier, Cabello‐Alvarado, Christian Javier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3348-9d319ee8ce4f0c0afe711ac8195a16e6c83f6e341ae4c3cdd9ddaf6a6432ee7d3
cites cdi_FETCH-LOGICAL-c3348-9d319ee8ce4f0c0afe711ac8195a16e6c83f6e341ae4c3cdd9ddaf6a6432ee7d3
container_end_page n/a
container_issue 38
container_start_page
container_title Journal of applied polymer science
container_volume 137
creator Covarrubias‐Gordillo, Carlos Andrés
Soriano‐Corral, Florentino
Ávila‐Orta, Carlos Alberto
Fonseca‐Florido, Heidi Andrea
González‐Morones, Pablo
Cruz‐Delgado, Víctor Javier
Cabello‐Alvarado, Christian Javier
description Low thermal conductivity of polypropylene (PP) is a key factor in limiting its use for the manufacture of solar heaters. To overcome this problem, in the present work, two different methods were tested to increase the thermal conductivity of a PP matrix by increasing the dispersion and compatibility between PP and carbon nanoparticles (CNPs). In the first method, CNPs modified superficially by plasma of propylene were used, and in the second, mixtures of CNPs (carbon nanofibers and graphene platelets in 9:1, 8:2, and 7:3 ratios) were used. Dispersion and compatibility between PP and CNPs were tested by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The results show that both methodologies increase the dispersion and compatibility and, therefore, the thermal conductivity of the PP matrix (0.14 W m−1 K−1), which reached up 0.90 W m−1 K−1. It was also observed that dispersion is a key factor in high concentrations (5 wt/wt%) of CNPs to obtain high thermal conductivity and compatibility in low concentrations (1 wt/wt%). Finally, only a synergistic effect was observed at 1 wt/wt% when using surface‐modified CNPs by plasma and at 5 wt/wt% when the CNPs were used without surface treatment.
doi_str_mv 10.1002/app.49138
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2420461620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420461620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3348-9d319ee8ce4f0c0afe711ac8195a16e6c83f6e341ae4c3cdd9ddaf6a6432ee7d3</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgUQpDLxBJCYk0tqx68ZjVdGCVEEGmC3LPlZd5YadANl4BJ6RJ8EQVhafwd-56EfokuAZwTibq7adMUFofoQmBItlyniWH6NJ_CNpLsTiFJ2FcMCYkAXmEySLUoVKfX18Vo1x1oFJ1g-bcJNsi_io2iTdHpxPKvfe9R5CYhufQL1XtY60bcqh9U07lFDDj_SVKhPd1KbXnXt13XCOTqwqA1z81Sl63tw-re_S3eP2fr3apZpSlqfCUCIAcg3MYo2VhSUhSudELBThwHVOLQfKiAKmqTZGGKMsV5zRDGBp6BRdjXPjOS89hE4emt7XcaXMWIYZJzzDUV2PSvsmBA9Wtt5Vyg-SYPmTn4z5yd_8op2P9s2VMPwP5aooxo5v3Ex0Rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420461620</pqid></control><display><type>article</type><title>Plasma‐modified CNFs, GPs, and their mixtures for enhanced polypropylene thermal conductivity</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Covarrubias‐Gordillo, Carlos Andrés ; Soriano‐Corral, Florentino ; Ávila‐Orta, Carlos Alberto ; Fonseca‐Florido, Heidi Andrea ; González‐Morones, Pablo ; Cruz‐Delgado, Víctor Javier ; Cabello‐Alvarado, Christian Javier</creator><creatorcontrib>Covarrubias‐Gordillo, Carlos Andrés ; Soriano‐Corral, Florentino ; Ávila‐Orta, Carlos Alberto ; Fonseca‐Florido, Heidi Andrea ; González‐Morones, Pablo ; Cruz‐Delgado, Víctor Javier ; Cabello‐Alvarado, Christian Javier</creatorcontrib><description>Low thermal conductivity of polypropylene (PP) is a key factor in limiting its use for the manufacture of solar heaters. To overcome this problem, in the present work, two different methods were tested to increase the thermal conductivity of a PP matrix by increasing the dispersion and compatibility between PP and carbon nanoparticles (CNPs). In the first method, CNPs modified superficially by plasma of propylene were used, and in the second, mixtures of CNPs (carbon nanofibers and graphene platelets in 9:1, 8:2, and 7:3 ratios) were used. Dispersion and compatibility between PP and CNPs were tested by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The results show that both methodologies increase the dispersion and compatibility and, therefore, the thermal conductivity of the PP matrix (0.14 W m−1 K−1), which reached up 0.90 W m−1 K−1. It was also observed that dispersion is a key factor in high concentrations (5 wt/wt%) of CNPs to obtain high thermal conductivity and compatibility in low concentrations (1 wt/wt%). Finally, only a synergistic effect was observed at 1 wt/wt% when using surface‐modified CNPs by plasma and at 5 wt/wt% when the CNPs were used without surface treatment.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.49138</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Carbon fibers ; Compatibility ; Conducting polymers ; Dispersion ; Electron microscopy ; Grafting ; Graphene ; Graphene and fullerenes ; Heat conductivity ; Heat transfer ; Low concentrations ; Materials science ; Microscopy ; Nanofibers ; Nanoparticles ; Nanostructured polymers ; Nanotubes ; Platelets (materials) ; Polymers ; Polypropylene ; Propylene ; Raman spectroscopy ; Surface treatment ; Synergistic effect ; Thermal conductivity ; Thermal properties</subject><ispartof>Journal of applied polymer science, 2020-10, Vol.137 (38), p.n/a</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3348-9d319ee8ce4f0c0afe711ac8195a16e6c83f6e341ae4c3cdd9ddaf6a6432ee7d3</citedby><cites>FETCH-LOGICAL-c3348-9d319ee8ce4f0c0afe711ac8195a16e6c83f6e341ae4c3cdd9ddaf6a6432ee7d3</cites><orcidid>0000-0002-2820-0958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Covarrubias‐Gordillo, Carlos Andrés</creatorcontrib><creatorcontrib>Soriano‐Corral, Florentino</creatorcontrib><creatorcontrib>Ávila‐Orta, Carlos Alberto</creatorcontrib><creatorcontrib>Fonseca‐Florido, Heidi Andrea</creatorcontrib><creatorcontrib>González‐Morones, Pablo</creatorcontrib><creatorcontrib>Cruz‐Delgado, Víctor Javier</creatorcontrib><creatorcontrib>Cabello‐Alvarado, Christian Javier</creatorcontrib><title>Plasma‐modified CNFs, GPs, and their mixtures for enhanced polypropylene thermal conductivity</title><title>Journal of applied polymer science</title><description>Low thermal conductivity of polypropylene (PP) is a key factor in limiting its use for the manufacture of solar heaters. To overcome this problem, in the present work, two different methods were tested to increase the thermal conductivity of a PP matrix by increasing the dispersion and compatibility between PP and carbon nanoparticles (CNPs). In the first method, CNPs modified superficially by plasma of propylene were used, and in the second, mixtures of CNPs (carbon nanofibers and graphene platelets in 9:1, 8:2, and 7:3 ratios) were used. Dispersion and compatibility between PP and CNPs were tested by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The results show that both methodologies increase the dispersion and compatibility and, therefore, the thermal conductivity of the PP matrix (0.14 W m−1 K−1), which reached up 0.90 W m−1 K−1. It was also observed that dispersion is a key factor in high concentrations (5 wt/wt%) of CNPs to obtain high thermal conductivity and compatibility in low concentrations (1 wt/wt%). Finally, only a synergistic effect was observed at 1 wt/wt% when using surface‐modified CNPs by plasma and at 5 wt/wt% when the CNPs were used without surface treatment.</description><subject>Carbon fibers</subject><subject>Compatibility</subject><subject>Conducting polymers</subject><subject>Dispersion</subject><subject>Electron microscopy</subject><subject>Grafting</subject><subject>Graphene</subject><subject>Graphene and fullerenes</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Low concentrations</subject><subject>Materials science</subject><subject>Microscopy</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Nanostructured polymers</subject><subject>Nanotubes</subject><subject>Platelets (materials)</subject><subject>Polymers</subject><subject>Polypropylene</subject><subject>Propylene</subject><subject>Raman spectroscopy</subject><subject>Surface treatment</subject><subject>Synergistic effect</subject><subject>Thermal conductivity</subject><subject>Thermal properties</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10LtOwzAUBmALgUQpDLxBJCYk0tqx68ZjVdGCVEEGmC3LPlZd5YadANl4BJ6RJ8EQVhafwd-56EfokuAZwTibq7adMUFofoQmBItlyniWH6NJ_CNpLsTiFJ2FcMCYkAXmEySLUoVKfX18Vo1x1oFJ1g-bcJNsi_io2iTdHpxPKvfe9R5CYhufQL1XtY60bcqh9U07lFDDj_SVKhPd1KbXnXt13XCOTqwqA1z81Sl63tw-re_S3eP2fr3apZpSlqfCUCIAcg3MYo2VhSUhSudELBThwHVOLQfKiAKmqTZGGKMsV5zRDGBp6BRdjXPjOS89hE4emt7XcaXMWIYZJzzDUV2PSvsmBA9Wtt5Vyg-SYPmTn4z5yd_8op2P9s2VMPwP5aooxo5v3Ex0Rw</recordid><startdate>20201010</startdate><enddate>20201010</enddate><creator>Covarrubias‐Gordillo, Carlos Andrés</creator><creator>Soriano‐Corral, Florentino</creator><creator>Ávila‐Orta, Carlos Alberto</creator><creator>Fonseca‐Florido, Heidi Andrea</creator><creator>González‐Morones, Pablo</creator><creator>Cruz‐Delgado, Víctor Javier</creator><creator>Cabello‐Alvarado, Christian Javier</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2820-0958</orcidid></search><sort><creationdate>20201010</creationdate><title>Plasma‐modified CNFs, GPs, and their mixtures for enhanced polypropylene thermal conductivity</title><author>Covarrubias‐Gordillo, Carlos Andrés ; Soriano‐Corral, Florentino ; Ávila‐Orta, Carlos Alberto ; Fonseca‐Florido, Heidi Andrea ; González‐Morones, Pablo ; Cruz‐Delgado, Víctor Javier ; Cabello‐Alvarado, Christian Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3348-9d319ee8ce4f0c0afe711ac8195a16e6c83f6e341ae4c3cdd9ddaf6a6432ee7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon fibers</topic><topic>Compatibility</topic><topic>Conducting polymers</topic><topic>Dispersion</topic><topic>Electron microscopy</topic><topic>Grafting</topic><topic>Graphene</topic><topic>Graphene and fullerenes</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Low concentrations</topic><topic>Materials science</topic><topic>Microscopy</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Nanostructured polymers</topic><topic>Nanotubes</topic><topic>Platelets (materials)</topic><topic>Polymers</topic><topic>Polypropylene</topic><topic>Propylene</topic><topic>Raman spectroscopy</topic><topic>Surface treatment</topic><topic>Synergistic effect</topic><topic>Thermal conductivity</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Covarrubias‐Gordillo, Carlos Andrés</creatorcontrib><creatorcontrib>Soriano‐Corral, Florentino</creatorcontrib><creatorcontrib>Ávila‐Orta, Carlos Alberto</creatorcontrib><creatorcontrib>Fonseca‐Florido, Heidi Andrea</creatorcontrib><creatorcontrib>González‐Morones, Pablo</creatorcontrib><creatorcontrib>Cruz‐Delgado, Víctor Javier</creatorcontrib><creatorcontrib>Cabello‐Alvarado, Christian Javier</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Covarrubias‐Gordillo, Carlos Andrés</au><au>Soriano‐Corral, Florentino</au><au>Ávila‐Orta, Carlos Alberto</au><au>Fonseca‐Florido, Heidi Andrea</au><au>González‐Morones, Pablo</au><au>Cruz‐Delgado, Víctor Javier</au><au>Cabello‐Alvarado, Christian Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma‐modified CNFs, GPs, and their mixtures for enhanced polypropylene thermal conductivity</atitle><jtitle>Journal of applied polymer science</jtitle><date>2020-10-10</date><risdate>2020</risdate><volume>137</volume><issue>38</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>Low thermal conductivity of polypropylene (PP) is a key factor in limiting its use for the manufacture of solar heaters. To overcome this problem, in the present work, two different methods were tested to increase the thermal conductivity of a PP matrix by increasing the dispersion and compatibility between PP and carbon nanoparticles (CNPs). In the first method, CNPs modified superficially by plasma of propylene were used, and in the second, mixtures of CNPs (carbon nanofibers and graphene platelets in 9:1, 8:2, and 7:3 ratios) were used. Dispersion and compatibility between PP and CNPs were tested by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The results show that both methodologies increase the dispersion and compatibility and, therefore, the thermal conductivity of the PP matrix (0.14 W m−1 K−1), which reached up 0.90 W m−1 K−1. It was also observed that dispersion is a key factor in high concentrations (5 wt/wt%) of CNPs to obtain high thermal conductivity and compatibility in low concentrations (1 wt/wt%). Finally, only a synergistic effect was observed at 1 wt/wt% when using surface‐modified CNPs by plasma and at 5 wt/wt% when the CNPs were used without surface treatment.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.49138</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2820-0958</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2020-10, Vol.137 (38), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2420461620
source Wiley-Blackwell Read & Publish Collection
subjects Carbon fibers
Compatibility
Conducting polymers
Dispersion
Electron microscopy
Grafting
Graphene
Graphene and fullerenes
Heat conductivity
Heat transfer
Low concentrations
Materials science
Microscopy
Nanofibers
Nanoparticles
Nanostructured polymers
Nanotubes
Platelets (materials)
Polymers
Polypropylene
Propylene
Raman spectroscopy
Surface treatment
Synergistic effect
Thermal conductivity
Thermal properties
title Plasma‐modified CNFs, GPs, and their mixtures for enhanced polypropylene thermal conductivity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A47%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma%E2%80%90modified%20CNFs,%20GPs,%20and%20their%20mixtures%20for%20enhanced%20polypropylene%20thermal%20conductivity&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Covarrubias%E2%80%90Gordillo,%20Carlos%20Andr%C3%A9s&rft.date=2020-10-10&rft.volume=137&rft.issue=38&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.49138&rft_dat=%3Cproquest_cross%3E2420461620%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3348-9d319ee8ce4f0c0afe711ac8195a16e6c83f6e341ae4c3cdd9ddaf6a6432ee7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2420461620&rft_id=info:pmid/&rfr_iscdi=true