Loading…
Physicochemical Model of Selection of Complex Compounds for Electroless Metal Plating
A physicochemical model of the choice of a ligand for the electroless deposition of metal–phosphorus alloys is proposed based on determining the conditions for electrochemical reactions that cause the formation of the alloy and minimizing possible side reactions that impede the quality of the deposi...
Saved in:
Published in: | Theoretical foundations of chemical engineering 2020-05, Vol.54 (3), p.474-481 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A physicochemical model of the choice of a ligand for the electroless deposition of metal–phosphorus alloys is proposed based on determining the conditions for electrochemical reactions that cause the formation of the alloy and minimizing possible side reactions that impede the quality of the deposition process. Based on the physicochemical model, the optimal range of values of the stability constants and pH was determined for electroless nickel plating. It is shown that, for the pH range 7–9, which corresponds to the maximum deposition rates, stability constants take values from 5 to 10; carrying out the process in more alkaline solutions requires the use of more stable complexes. The predictive ability of the model is confirmed by experimental studies of the process of electroless nickel plating from solutions of various ligand compositions. |
---|---|
ISSN: | 0040-5795 1608-3431 |
DOI: | 10.1134/S0040579520030136 |