Loading…
Learning of Planning Models for Dexterous Manipulation Based on Human Demonstrations
In the human environment service robots have to be able to manipulate autonomously a large variety of objects in a workspace restricted by collisions with obstacles, self-collisions and task constraints. Planning enables the robot system to generalize predefined or learned manipulation knowledge to...
Saved in:
Published in: | International journal of social robotics 2012-11, Vol.4 (4), p.437-448 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the human environment service robots have to be able to manipulate autonomously a large variety of objects in a workspace restricted by collisions with obstacles, self-collisions and task constraints. Planning enables the robot system to generalize predefined or learned manipulation knowledge to new environments. For dexterous manipulation tasks the manual definition of planning models is time-consuming and error-prone. In this work, planning models for dexterous tasks are learned based on multiple human demonstrations using a general feature space including automatically generated contact constraints, which are automatically relaxed to consider the correspondence problem. In order to execute the learned planning model with different objects, the contact location is transformed to given object geometry using morphing. The initial, overspecialized planning model is generalized using a previously described, parallelized optimization algorithm with the goal to find a maximal subset of task constraints, which admits a solution to a set of test problems. Experiments on two different, dexterous tasks show the applicability of the learning approach to dexterous manipulation tasks. |
---|---|
ISSN: | 1875-4791 1875-4805 |
DOI: | 10.1007/s12369-012-0162-y |