Loading…
Hopfield attractor-trusted neural network: an attack-resistant image encryption
The recent advancement in multimedia technology has undoubtedly made the transmission of objects of information efficiently. Interestingly, images are the prominent and frequent representations communicated across the defence, social, private and aerospace networks. Image ciphering or image encrypti...
Saved in:
Published in: | Neural computing & applications 2020-08, Vol.32 (15), p.11477-11489 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The recent advancement in multimedia technology has undoubtedly made the transmission of objects of information efficiently. Interestingly, images are the prominent and frequent representations communicated across the defence, social, private and aerospace networks. Image ciphering or image encryption is adopted as a secure medium of the confidential image. The utility of soft computing for encryption looks to offer an uncompromising impact in enhancing the metrics. Aligning with neural networks, a Hopfield attractor-based encryption scheme has proposed in this work. The parameter sensitivity, random similarity and learning ability have been instrumental in choosing this attractor for performing confusion and diffusion. The uniqueness of this scheme is the achievement of average entropy of 7.997, average correlation of 0.0047, average NPCR of 99.62 and UACI of 33.43 without using any other chaotic maps, thus proposing attack-resistant image encryption against attackable chaotic maps. |
---|---|
ISSN: | 0941-0643 1433-3058 |
DOI: | 10.1007/s00521-019-04637-4 |