Loading…
Construction and analysis of some nonstandard finite difference methods for the FitzHugh–Nagumo equation
In this work, we construct four versions of nonstandard finite difference schemes in order to solve the FitzHugh–Nagumo equation with specified initial and boundary conditions under three different regimes giving rise to three cases. The properties of the methods such as positivity and boundedness a...
Saved in:
Published in: | Numerical methods for partial differential equations 2020-09, Vol.36 (5), p.1145-1169 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we construct four versions of nonstandard finite difference schemes in order to solve the FitzHugh–Nagumo equation with specified initial and boundary conditions under three different regimes giving rise to three cases. The properties of the methods such as positivity and boundedness are studied. The numerical experiment chosen is quite challenging due to shock‐like profiles. The performance of the four methods is compared by computing L1, L∞ errors, rate of convergence with respect to time and central processing unit time at given time, T = 0.5. Error estimates have also been studied for the most efficient scheme. |
---|---|
ISSN: | 0749-159X 1098-2426 |
DOI: | 10.1002/num.22468 |