Loading…

Dynamic Modeling of Passively Draining Structures for Aerial-Aquatic Unmanned Vehicles

In the design of hybrid unmanned aerial and underwater vehicles, buoyancy management and weight are two major factors. Large wing volumes used by unmanned air vehicles to fly efficiently drive vehicle buoyancy up, preventing them from submerging. Heavy active buoyancy control systems can overcome th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of oceanic engineering 2020-07, Vol.45 (3), p.840-850
Main Authors: Stewart, William, Weisler, Warren, Anderson, Mark, Bryant, Matthew, Peters, Kara
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the design of hybrid unmanned aerial and underwater vehicles, buoyancy management and weight are two major factors. Large wing volumes used by unmanned air vehicles to fly efficiently drive vehicle buoyancy up, preventing them from submerging. Heavy active buoyancy control systems can overcome this, but cost weight, energy, and time to transition between underwater operation and flight. An alternative design, consisting of a passively flooding and draining wing, is presented in this paper. Relevant dynamic parameters for a full vehicle dynamic model are identified. A dynamic model of a draining structure is developed and verified experimentally on both a simple cylinder and a full wing structure. With proper tuning, the model captures the salient dynamic behavior of passive draining during vehicle egress. A prototype unmanned aerial and underwater vehicle was built, flown, and used to collect flight test data. The model is used to accurately predict the takeoff performance of the vehicle. As given, the model can be incorporated into a full vehicle dynamic model to aid in the design, simulation, and control of hybrid unmanned aerial and underwater vehicles with passively draining components.
ISSN:0364-9059
1558-1691
DOI:10.1109/JOE.2019.2898069