Loading…
SAPTM: Towards High-Throughput Per-Flow Traffic Measurement with a Systolic Array-Like Architecture on FPGA
Per-flow traffic measurement has emerged as a critical but challenging task in data centers in recent years in the face of massive network traffic. Many approximate methods have been proposed to resolve the existing resource-accuracy trade-off in per-flow traffic measurement, one of which is the ske...
Saved in:
Published in: | Electronics (Basel) 2020-07, Vol.9 (7), p.1160 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Per-flow traffic measurement has emerged as a critical but challenging task in data centers in recent years in the face of massive network traffic. Many approximate methods have been proposed to resolve the existing resource-accuracy trade-off in per-flow traffic measurement, one of which is the sketch-based method. However, sketches are affected by their high computational cost and low throughput; moreover, their measurement accuracy is hard to guarantee under the conditions of changing network bandwidth or flow size distribution. Recently, FPGAplatforms have been widely deployed in data centers, as they demonstrate a good fit for high-speed network processing. In this work, we aim to address the problem of per-flow traffic measurement from a hardware architecture perspective. We thus design SAPTM, a pipelined systolic array-like architecture for high-throughput per-flow traffic measurement on FPGA. We adopt memory-friendly D-left hashing in the design of SAPTM, which guarantees high space utilization during flow insertion and eviction, successfully addressing the challenge of tracking a high-speed data stream under limited memory resources on FPGA. Evaluations on the Xilinx VCU118 platform with real-world benchmarks demonstrate that SAPTM possesses high space utilization. Comparisons with state-of-the-art sketch-based solutions show that SAPTM outperforms comparison methods in terms of throughput by a factor of 14.1x–70.5x without any accuracy loss. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics9071160 |