Loading…

An endpoint case of the renormalization property for the relativistic Vlasov–Maxwell system

The aim of this paper is to improve the previous work on the relativistic Vlasov–Maxwell system, one of the most important equations in plasma physics. Recently, Bardos et al. [Q. Appl. Math. 78, 193–217 (2020)] presented a proof of an Onsager type conjecture on the renormalization property and the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2020-07, Vol.61 (7)
Main Authors: Nguyen, Thanh-Nhan, Tran, Minh-Phuong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this paper is to improve the previous work on the relativistic Vlasov–Maxwell system, one of the most important equations in plasma physics. Recently, Bardos et al. [Q. Appl. Math. 78, 193–217 (2020)] presented a proof of an Onsager type conjecture on the renormalization property and the entropy conservation laws for the relativistic Vlasov–Maxwell system. Particularly, the authors proved that if the distribution function u∈L∞(0,T;Wθ,p(R6)) and the electromagnetic field E,B∈L∞(0,T;Wκ,q(R3)) with θ, κ ∈ (0, 1) such that θκ + κ + 3θ − 1 > 0 and 1/p + 1/q ≤ 1, then the renormalization property and entropy conservation laws hold. To determine a complete proof of this work, in this paper, we improve their results under weaker regularity assumptions for a weak solution to the relativistic Vlasov–Maxwell equations. More precisely, we show that under similar hypotheses, the renormalization property and entropy conservation laws for the weak solution to the relativistic Vlasov–Maxwell system even hold for the endpoint case θκ + κ + 3θ − 1 = 0. Our proof is based on better estimations on regularization operators.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.5144712