Loading…
Shattering-extremal set systems from Sperner families
We say that a set system F⊆2[n] shatters a given set S⊆[n] if 2S={F∩S:F∈F}. The Sauer–Shelah lemma states that in general, a set system F shatters at least |F| sets. We concentrate on the case of equality and call a set system shattering-extremal if it shatters exactly |F| sets. Here we discuss an a...
Saved in:
Published in: | Discrete Applied Mathematics 2020-04, Vol.276, p.92-101 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We say that a set system F⊆2[n] shatters a given set S⊆[n] if 2S={F∩S:F∈F}. The Sauer–Shelah lemma states that in general, a set system F shatters at least |F| sets. We concentrate on the case of equality and call a set system shattering-extremal if it shatters exactly |F| sets. Here we discuss an approach to study these systems using Sperner families and prove some preliminary results based on an earlier algebraic approach. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2019.07.016 |