Loading…
Bohmian Trajectories for Hamiltonians with Interior–Boundary Conditions
Recently, there has been progress in developing interior–boundary conditions (IBCs) as a technique of avoiding the problem of ultraviolet divergence in non-relativistic quantum field theories while treating space as a continuum and electrons as point particles. An IBC can be expressed in the particl...
Saved in:
Published in: | Journal of statistical physics 2020-09, Vol.180 (1-6), p.34-73 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, there has been progress in developing interior–boundary conditions (IBCs) as a technique of avoiding the problem of ultraviolet divergence in non-relativistic quantum field theories while treating space as a continuum and electrons as point particles. An IBC can be expressed in the particle-position representation of a Fock vector
ψ
as a condition on the values of
ψ
on the set of collision configurations, and the corresponding Hamiltonian is defined on a domain of vectors satisfying this condition. We describe here how Bohmian mechanics can be extended to this type of Hamiltonian. In fact, part of the development of IBCs was inspired by the Bohmian picture. Particle creation and annihilation correspond to jumps in configuration space; the annihilation is deterministic and occurs when two particles (of the appropriate species) meet, whereas the creation is stochastic and occurs at a rate dictated by the demand for the equivariance of the
|
ψ
|
2
distribution, time reversal symmetry, and the Markov property. The process is closely related to processes known as Bell-type quantum field theories. |
---|---|
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1007/s10955-019-02335-y |