Loading…
A study of deep neural networks for human activity recognition
Human activity recognition and deep learning are two fields that have attracted attention in recent years. The former due to its relevance in many application domains, such as ambient assisted living or health monitoring, and the latter for its recent and excellent performance achievements in differ...
Saved in:
Published in: | Computational intelligence 2020-08, Vol.36 (3), p.1113-1139 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Human activity recognition and deep learning are two fields that have attracted attention in recent years. The former due to its relevance in many application domains, such as ambient assisted living or health monitoring, and the latter for its recent and excellent performance achievements in different domains of application such as image and speech recognition. In this article, an extensive analysis among the most suited deep learning architectures for activity recognition is conducted to compare its performance in terms of accuracy, speed, and memory requirements. In particular, convolutional neural networks (CNN), long short‐term memory networks (LSTM), bidirectional LSTM (biLSTM), gated recurrent unit networks (GRU), and deep belief networks (DBN) have been tested on a total of 10 publicly available datasets, with different sensors, sets of activities, and sampling rates. All tests have been designed under a multimodal approach to take advantage of synchronized raw sensor' signals. Results show that CNNs are efficient at capturing local temporal dependencies of activity signals, as well as at identifying correlations among sensors. Their performance in activity classification is comparable with, and in most cases better than, the performance of recurrent models. Their faster response and lower memory footprint make them the architecture of choice for wearable and IoT devices. |
---|---|
ISSN: | 0824-7935 1467-8640 |
DOI: | 10.1111/coin.12318 |