Loading…
Generalization of h-Convex Stochastic Processes and Some Classical Inequalities
The field of stochastic processes is essentially a branch of probability theory, treating probabilistic models that evolve in time. It is best viewed as a branch of mathematics, starting with the axioms of probability and containing a rich and fascinating set of results following from those axioms....
Saved in:
Published in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-9 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The field of stochastic processes is essentially a branch of probability theory, treating probabilistic models that evolve in time. It is best viewed as a branch of mathematics, starting with the axioms of probability and containing a rich and fascinating set of results following from those axioms. In probability theory, a convex function applied to the expected value of a random variable is always bounded above by the expected value of the convex function of the random variable. In this paper, the concept of generalized h-convex stochastic processes is introduced, and some basic properties concerning generalized h-convex stochastic processes are developed. Furthermore, we establish Jensen and Hermite–Hadamard and Fejér-type inequalities for this generalization. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2020/1583807 |