Loading…

Facile synthesis of manganese oxide nanostructures with different crystallographic phase and morphology for supercapacitors

The charge storage performances of manganese oxide (MnO2) nanostructures highly depend on their crystallographic phase and structure. In this work, MnO2 nanostructures (α-MnO2, β-MnO2 and δ-MnO2) with high crystallinity and different morphology are prepared through a simple, mild and controllable hy...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2020-07, Vol.830, p.154524, Article 154524
Main Authors: Yuan, Yankai, Zhu, Jingyi, Wang, Ying, Li, Shuni, Jin, Pujun, Chen, Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The charge storage performances of manganese oxide (MnO2) nanostructures highly depend on their crystallographic phase and structure. In this work, MnO2 nanostructures (α-MnO2, β-MnO2 and δ-MnO2) with high crystallinity and different morphology are prepared through a simple, mild and controllable hydrothermal method at 120 °C. [Mn(C8H4O4) (H2O)2]n, a water insoluble metal-organic framework (Mn-MOF), can efficiently react with KMnO4 at different pH, which results in the generation of α-MnO2, β-MnO2 and δ-MnO2. The size of MnO2 nanostructures can be easily adjusted by controlling the ratio of Mn(II)/Mn(VII). The as-prepared MnO2 nanostructures with different structures and sizes are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), and N2 adsorption/desorption. Among three samples, the layered δ-MnO2 nanostructures with Mn(II)/Mn(VII) = 2.0 show a specific surface area of 240 m2·g−1, specific capacitance of 416 F·g−1 at 0.5 A·g−1, which can be explained as both adsorption/desorption and intercalation/deintercalation process. The energy density of the asymmetric supercapacitor constructed by MnO2 and activated carbon (AC) is 23.2 W·h·kg−1 at a power density of 425 W·kg−1. The controllable synthesis of MnO2 nanostructures with different crystallographic phases based on Mn-MOF may give further insights into supercapacitors. [Display omitted] •Mn(C8H4O4) (H2O)2]n, a water insoluble Mn-MOF was used as precursor.•α-MnO2, β-MnO2, and δ-MnO2 were prepared by adjusting pH.•The morphology of MnO2 was controlled by adjusting the ratio of Mn-MOF to KMnO4.•Ultrathin δ-MnO2 with high specific surface area revealed high specific capacitance.•The charge storage mechanism included the adsorption and intercalation process.
ISSN:0925-8388
1873-4669
DOI:10.1016/j.jallcom.2020.154524