Loading…
Facile synthesis of manganese oxide nanostructures with different crystallographic phase and morphology for supercapacitors
The charge storage performances of manganese oxide (MnO2) nanostructures highly depend on their crystallographic phase and structure. In this work, MnO2 nanostructures (α-MnO2, β-MnO2 and δ-MnO2) with high crystallinity and different morphology are prepared through a simple, mild and controllable hy...
Saved in:
Published in: | Journal of alloys and compounds 2020-07, Vol.830, p.154524, Article 154524 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-327905b49f7bca828147444db2498ebc69272ee4a402fa5d34dc8f8bafaa5fb53 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-327905b49f7bca828147444db2498ebc69272ee4a402fa5d34dc8f8bafaa5fb53 |
container_end_page | |
container_issue | |
container_start_page | 154524 |
container_title | Journal of alloys and compounds |
container_volume | 830 |
creator | Yuan, Yankai Zhu, Jingyi Wang, Ying Li, Shuni Jin, Pujun Chen, Yu |
description | The charge storage performances of manganese oxide (MnO2) nanostructures highly depend on their crystallographic phase and structure. In this work, MnO2 nanostructures (α-MnO2, β-MnO2 and δ-MnO2) with high crystallinity and different morphology are prepared through a simple, mild and controllable hydrothermal method at 120 °C. [Mn(C8H4O4) (H2O)2]n, a water insoluble metal-organic framework (Mn-MOF), can efficiently react with KMnO4 at different pH, which results in the generation of α-MnO2, β-MnO2 and δ-MnO2. The size of MnO2 nanostructures can be easily adjusted by controlling the ratio of Mn(II)/Mn(VII). The as-prepared MnO2 nanostructures with different structures and sizes are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), and N2 adsorption/desorption. Among three samples, the layered δ-MnO2 nanostructures with Mn(II)/Mn(VII) = 2.0 show a specific surface area of 240 m2·g−1, specific capacitance of 416 F·g−1 at 0.5 A·g−1, which can be explained as both adsorption/desorption and intercalation/deintercalation process. The energy density of the asymmetric supercapacitor constructed by MnO2 and activated carbon (AC) is 23.2 W·h·kg−1 at a power density of 425 W·kg−1. The controllable synthesis of MnO2 nanostructures with different crystallographic phases based on Mn-MOF may give further insights into supercapacitors.
[Display omitted]
•Mn(C8H4O4) (H2O)2]n, a water insoluble Mn-MOF was used as precursor.•α-MnO2, β-MnO2, and δ-MnO2 were prepared by adjusting pH.•The morphology of MnO2 was controlled by adjusting the ratio of Mn-MOF to KMnO4.•Ultrathin δ-MnO2 with high specific surface area revealed high specific capacitance.•The charge storage mechanism included the adsorption and intercalation process. |
doi_str_mv | 10.1016/j.jallcom.2020.154524 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2435219167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838820308872</els_id><sourcerecordid>2435219167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-327905b49f7bca828147444db2498ebc69272ee4a402fa5d34dc8f8bafaa5fb53</originalsourceid><addsrcrecordid>eNqFkE-LFDEQxYMoOK5-BCHgucf87U6fRBZXhQUveg7V6cp2mpmkTdLq4Jc3y-zdU0HVe6-qfoS85ezIGe_fr8cVTieXzkfBROtppYV6Rg7cDLJTfT8-Jwc2Ct0ZacxL8qqUlTHGR8kP5O8duHBCWi6xLlhCocnTM8QHiFiQpj9hRhohplLz7uqesdDfoS50Dt5jxlipy5dS2wHpIcO2BEe3BZoV4kzPKW9LapML9SnTsm-YHWxtZU25vCYvPJwKvnmqN-TH3afvt1-6-2-fv95-vO-clEPtpBhGpic1-mFyYIThalBKzZNQo8HJ9aMYBKICxYQHPUs1O-PNBB5A-0nLG_Lumrvl9HPHUu2a9hzbSiuU1IKPvB-aSl9VLqdSMnq75XCGfLGc2UfOdrVPnO0jZ3vl3Hwfrj5sL_wKmG1xAaPDOWR01c4p_CfhH9UDjQo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435219167</pqid></control><display><type>article</type><title>Facile synthesis of manganese oxide nanostructures with different crystallographic phase and morphology for supercapacitors</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Yuan, Yankai ; Zhu, Jingyi ; Wang, Ying ; Li, Shuni ; Jin, Pujun ; Chen, Yu</creator><creatorcontrib>Yuan, Yankai ; Zhu, Jingyi ; Wang, Ying ; Li, Shuni ; Jin, Pujun ; Chen, Yu</creatorcontrib><description>The charge storage performances of manganese oxide (MnO2) nanostructures highly depend on their crystallographic phase and structure. In this work, MnO2 nanostructures (α-MnO2, β-MnO2 and δ-MnO2) with high crystallinity and different morphology are prepared through a simple, mild and controllable hydrothermal method at 120 °C. [Mn(C8H4O4) (H2O)2]n, a water insoluble metal-organic framework (Mn-MOF), can efficiently react with KMnO4 at different pH, which results in the generation of α-MnO2, β-MnO2 and δ-MnO2. The size of MnO2 nanostructures can be easily adjusted by controlling the ratio of Mn(II)/Mn(VII). The as-prepared MnO2 nanostructures with different structures and sizes are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), and N2 adsorption/desorption. Among three samples, the layered δ-MnO2 nanostructures with Mn(II)/Mn(VII) = 2.0 show a specific surface area of 240 m2·g−1, specific capacitance of 416 F·g−1 at 0.5 A·g−1, which can be explained as both adsorption/desorption and intercalation/deintercalation process. The energy density of the asymmetric supercapacitor constructed by MnO2 and activated carbon (AC) is 23.2 W·h·kg−1 at a power density of 425 W·kg−1. The controllable synthesis of MnO2 nanostructures with different crystallographic phases based on Mn-MOF may give further insights into supercapacitors.
[Display omitted]
•Mn(C8H4O4) (H2O)2]n, a water insoluble Mn-MOF was used as precursor.•α-MnO2, β-MnO2, and δ-MnO2 were prepared by adjusting pH.•The morphology of MnO2 was controlled by adjusting the ratio of Mn-MOF to KMnO4.•Ultrathin δ-MnO2 with high specific surface area revealed high specific capacitance.•The charge storage mechanism included the adsorption and intercalation process.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.154524</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Activated carbon ; Adsorption ; Crystallography ; Desorption ; Electron microscopes ; Field emission microscopy ; Flux density ; Hydrothermal synthesis ; Manganese dioxide ; Manganese oxide ; Manganese oxides ; Metal-organic framework ; Metal-organic frameworks ; Morphology ; Nanostructure ; Photoelectrons ; Potassium permanganate ; Specific capacitance ; Stability ; Supercapacitor ; Supercapacitors ; Synthesis ; X ray photoelectron spectroscopy</subject><ispartof>Journal of alloys and compounds, 2020-07, Vol.830, p.154524, Article 154524</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 25, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-327905b49f7bca828147444db2498ebc69272ee4a402fa5d34dc8f8bafaa5fb53</citedby><cites>FETCH-LOGICAL-c337t-327905b49f7bca828147444db2498ebc69272ee4a402fa5d34dc8f8bafaa5fb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yuan, Yankai</creatorcontrib><creatorcontrib>Zhu, Jingyi</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Li, Shuni</creatorcontrib><creatorcontrib>Jin, Pujun</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><title>Facile synthesis of manganese oxide nanostructures with different crystallographic phase and morphology for supercapacitors</title><title>Journal of alloys and compounds</title><description>The charge storage performances of manganese oxide (MnO2) nanostructures highly depend on their crystallographic phase and structure. In this work, MnO2 nanostructures (α-MnO2, β-MnO2 and δ-MnO2) with high crystallinity and different morphology are prepared through a simple, mild and controllable hydrothermal method at 120 °C. [Mn(C8H4O4) (H2O)2]n, a water insoluble metal-organic framework (Mn-MOF), can efficiently react with KMnO4 at different pH, which results in the generation of α-MnO2, β-MnO2 and δ-MnO2. The size of MnO2 nanostructures can be easily adjusted by controlling the ratio of Mn(II)/Mn(VII). The as-prepared MnO2 nanostructures with different structures and sizes are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), and N2 adsorption/desorption. Among three samples, the layered δ-MnO2 nanostructures with Mn(II)/Mn(VII) = 2.0 show a specific surface area of 240 m2·g−1, specific capacitance of 416 F·g−1 at 0.5 A·g−1, which can be explained as both adsorption/desorption and intercalation/deintercalation process. The energy density of the asymmetric supercapacitor constructed by MnO2 and activated carbon (AC) is 23.2 W·h·kg−1 at a power density of 425 W·kg−1. The controllable synthesis of MnO2 nanostructures with different crystallographic phases based on Mn-MOF may give further insights into supercapacitors.
[Display omitted]
•Mn(C8H4O4) (H2O)2]n, a water insoluble Mn-MOF was used as precursor.•α-MnO2, β-MnO2, and δ-MnO2 were prepared by adjusting pH.•The morphology of MnO2 was controlled by adjusting the ratio of Mn-MOF to KMnO4.•Ultrathin δ-MnO2 with high specific surface area revealed high specific capacitance.•The charge storage mechanism included the adsorption and intercalation process.</description><subject>Activated carbon</subject><subject>Adsorption</subject><subject>Crystallography</subject><subject>Desorption</subject><subject>Electron microscopes</subject><subject>Field emission microscopy</subject><subject>Flux density</subject><subject>Hydrothermal synthesis</subject><subject>Manganese dioxide</subject><subject>Manganese oxide</subject><subject>Manganese oxides</subject><subject>Metal-organic framework</subject><subject>Metal-organic frameworks</subject><subject>Morphology</subject><subject>Nanostructure</subject><subject>Photoelectrons</subject><subject>Potassium permanganate</subject><subject>Specific capacitance</subject><subject>Stability</subject><subject>Supercapacitor</subject><subject>Supercapacitors</subject><subject>Synthesis</subject><subject>X ray photoelectron spectroscopy</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE-LFDEQxYMoOK5-BCHgucf87U6fRBZXhQUveg7V6cp2mpmkTdLq4Jc3y-zdU0HVe6-qfoS85ezIGe_fr8cVTieXzkfBROtppYV6Rg7cDLJTfT8-Jwc2Ct0ZacxL8qqUlTHGR8kP5O8duHBCWi6xLlhCocnTM8QHiFiQpj9hRhohplLz7uqesdDfoS50Dt5jxlipy5dS2wHpIcO2BEe3BZoV4kzPKW9LapML9SnTsm-YHWxtZU25vCYvPJwKvnmqN-TH3afvt1-6-2-fv95-vO-clEPtpBhGpic1-mFyYIThalBKzZNQo8HJ9aMYBKICxYQHPUs1O-PNBB5A-0nLG_Lumrvl9HPHUu2a9hzbSiuU1IKPvB-aSl9VLqdSMnq75XCGfLGc2UfOdrVPnO0jZ3vl3Hwfrj5sL_wKmG1xAaPDOWR01c4p_CfhH9UDjQo</recordid><startdate>20200725</startdate><enddate>20200725</enddate><creator>Yuan, Yankai</creator><creator>Zhu, Jingyi</creator><creator>Wang, Ying</creator><creator>Li, Shuni</creator><creator>Jin, Pujun</creator><creator>Chen, Yu</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20200725</creationdate><title>Facile synthesis of manganese oxide nanostructures with different crystallographic phase and morphology for supercapacitors</title><author>Yuan, Yankai ; Zhu, Jingyi ; Wang, Ying ; Li, Shuni ; Jin, Pujun ; Chen, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-327905b49f7bca828147444db2498ebc69272ee4a402fa5d34dc8f8bafaa5fb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activated carbon</topic><topic>Adsorption</topic><topic>Crystallography</topic><topic>Desorption</topic><topic>Electron microscopes</topic><topic>Field emission microscopy</topic><topic>Flux density</topic><topic>Hydrothermal synthesis</topic><topic>Manganese dioxide</topic><topic>Manganese oxide</topic><topic>Manganese oxides</topic><topic>Metal-organic framework</topic><topic>Metal-organic frameworks</topic><topic>Morphology</topic><topic>Nanostructure</topic><topic>Photoelectrons</topic><topic>Potassium permanganate</topic><topic>Specific capacitance</topic><topic>Stability</topic><topic>Supercapacitor</topic><topic>Supercapacitors</topic><topic>Synthesis</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Yankai</creatorcontrib><creatorcontrib>Zhu, Jingyi</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Li, Shuni</creatorcontrib><creatorcontrib>Jin, Pujun</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Yankai</au><au>Zhu, Jingyi</au><au>Wang, Ying</au><au>Li, Shuni</au><au>Jin, Pujun</au><au>Chen, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile synthesis of manganese oxide nanostructures with different crystallographic phase and morphology for supercapacitors</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2020-07-25</date><risdate>2020</risdate><volume>830</volume><spage>154524</spage><pages>154524-</pages><artnum>154524</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>The charge storage performances of manganese oxide (MnO2) nanostructures highly depend on their crystallographic phase and structure. In this work, MnO2 nanostructures (α-MnO2, β-MnO2 and δ-MnO2) with high crystallinity and different morphology are prepared through a simple, mild and controllable hydrothermal method at 120 °C. [Mn(C8H4O4) (H2O)2]n, a water insoluble metal-organic framework (Mn-MOF), can efficiently react with KMnO4 at different pH, which results in the generation of α-MnO2, β-MnO2 and δ-MnO2. The size of MnO2 nanostructures can be easily adjusted by controlling the ratio of Mn(II)/Mn(VII). The as-prepared MnO2 nanostructures with different structures and sizes are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), and N2 adsorption/desorption. Among three samples, the layered δ-MnO2 nanostructures with Mn(II)/Mn(VII) = 2.0 show a specific surface area of 240 m2·g−1, specific capacitance of 416 F·g−1 at 0.5 A·g−1, which can be explained as both adsorption/desorption and intercalation/deintercalation process. The energy density of the asymmetric supercapacitor constructed by MnO2 and activated carbon (AC) is 23.2 W·h·kg−1 at a power density of 425 W·kg−1. The controllable synthesis of MnO2 nanostructures with different crystallographic phases based on Mn-MOF may give further insights into supercapacitors.
[Display omitted]
•Mn(C8H4O4) (H2O)2]n, a water insoluble Mn-MOF was used as precursor.•α-MnO2, β-MnO2, and δ-MnO2 were prepared by adjusting pH.•The morphology of MnO2 was controlled by adjusting the ratio of Mn-MOF to KMnO4.•Ultrathin δ-MnO2 with high specific surface area revealed high specific capacitance.•The charge storage mechanism included the adsorption and intercalation process.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.154524</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2020-07, Vol.830, p.154524, Article 154524 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2435219167 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Activated carbon Adsorption Crystallography Desorption Electron microscopes Field emission microscopy Flux density Hydrothermal synthesis Manganese dioxide Manganese oxide Manganese oxides Metal-organic framework Metal-organic frameworks Morphology Nanostructure Photoelectrons Potassium permanganate Specific capacitance Stability Supercapacitor Supercapacitors Synthesis X ray photoelectron spectroscopy |
title | Facile synthesis of manganese oxide nanostructures with different crystallographic phase and morphology for supercapacitors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20synthesis%20of%20manganese%20oxide%20nanostructures%20with%20different%20crystallographic%20phase%20and%20morphology%20for%20supercapacitors&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Yuan,%20Yankai&rft.date=2020-07-25&rft.volume=830&rft.spage=154524&rft.pages=154524-&rft.artnum=154524&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.154524&rft_dat=%3Cproquest_cross%3E2435219167%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-327905b49f7bca828147444db2498ebc69272ee4a402fa5d34dc8f8bafaa5fb53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2435219167&rft_id=info:pmid/&rfr_iscdi=true |