Loading…

Facile synthesis of manganese oxide nanostructures with different crystallographic phase and morphology for supercapacitors

The charge storage performances of manganese oxide (MnO2) nanostructures highly depend on their crystallographic phase and structure. In this work, MnO2 nanostructures (α-MnO2, β-MnO2 and δ-MnO2) with high crystallinity and different morphology are prepared through a simple, mild and controllable hy...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2020-07, Vol.830, p.154524, Article 154524
Main Authors: Yuan, Yankai, Zhu, Jingyi, Wang, Ying, Li, Shuni, Jin, Pujun, Chen, Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-327905b49f7bca828147444db2498ebc69272ee4a402fa5d34dc8f8bafaa5fb53
cites cdi_FETCH-LOGICAL-c337t-327905b49f7bca828147444db2498ebc69272ee4a402fa5d34dc8f8bafaa5fb53
container_end_page
container_issue
container_start_page 154524
container_title Journal of alloys and compounds
container_volume 830
creator Yuan, Yankai
Zhu, Jingyi
Wang, Ying
Li, Shuni
Jin, Pujun
Chen, Yu
description The charge storage performances of manganese oxide (MnO2) nanostructures highly depend on their crystallographic phase and structure. In this work, MnO2 nanostructures (α-MnO2, β-MnO2 and δ-MnO2) with high crystallinity and different morphology are prepared through a simple, mild and controllable hydrothermal method at 120 °C. [Mn(C8H4O4) (H2O)2]n, a water insoluble metal-organic framework (Mn-MOF), can efficiently react with KMnO4 at different pH, which results in the generation of α-MnO2, β-MnO2 and δ-MnO2. The size of MnO2 nanostructures can be easily adjusted by controlling the ratio of Mn(II)/Mn(VII). The as-prepared MnO2 nanostructures with different structures and sizes are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), and N2 adsorption/desorption. Among three samples, the layered δ-MnO2 nanostructures with Mn(II)/Mn(VII) = 2.0 show a specific surface area of 240 m2·g−1, specific capacitance of 416 F·g−1 at 0.5 A·g−1, which can be explained as both adsorption/desorption and intercalation/deintercalation process. The energy density of the asymmetric supercapacitor constructed by MnO2 and activated carbon (AC) is 23.2 W·h·kg−1 at a power density of 425 W·kg−1. The controllable synthesis of MnO2 nanostructures with different crystallographic phases based on Mn-MOF may give further insights into supercapacitors. [Display omitted] •Mn(C8H4O4) (H2O)2]n, a water insoluble Mn-MOF was used as precursor.•α-MnO2, β-MnO2, and δ-MnO2 were prepared by adjusting pH.•The morphology of MnO2 was controlled by adjusting the ratio of Mn-MOF to KMnO4.•Ultrathin δ-MnO2 with high specific surface area revealed high specific capacitance.•The charge storage mechanism included the adsorption and intercalation process.
doi_str_mv 10.1016/j.jallcom.2020.154524
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2435219167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838820308872</els_id><sourcerecordid>2435219167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-327905b49f7bca828147444db2498ebc69272ee4a402fa5d34dc8f8bafaa5fb53</originalsourceid><addsrcrecordid>eNqFkE-LFDEQxYMoOK5-BCHgucf87U6fRBZXhQUveg7V6cp2mpmkTdLq4Jc3y-zdU0HVe6-qfoS85ezIGe_fr8cVTieXzkfBROtppYV6Rg7cDLJTfT8-Jwc2Ct0ZacxL8qqUlTHGR8kP5O8duHBCWi6xLlhCocnTM8QHiFiQpj9hRhohplLz7uqesdDfoS50Dt5jxlipy5dS2wHpIcO2BEe3BZoV4kzPKW9LapML9SnTsm-YHWxtZU25vCYvPJwKvnmqN-TH3afvt1-6-2-fv95-vO-clEPtpBhGpic1-mFyYIThalBKzZNQo8HJ9aMYBKICxYQHPUs1O-PNBB5A-0nLG_Lumrvl9HPHUu2a9hzbSiuU1IKPvB-aSl9VLqdSMnq75XCGfLGc2UfOdrVPnO0jZ3vl3Hwfrj5sL_wKmG1xAaPDOWR01c4p_CfhH9UDjQo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435219167</pqid></control><display><type>article</type><title>Facile synthesis of manganese oxide nanostructures with different crystallographic phase and morphology for supercapacitors</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Yuan, Yankai ; Zhu, Jingyi ; Wang, Ying ; Li, Shuni ; Jin, Pujun ; Chen, Yu</creator><creatorcontrib>Yuan, Yankai ; Zhu, Jingyi ; Wang, Ying ; Li, Shuni ; Jin, Pujun ; Chen, Yu</creatorcontrib><description>The charge storage performances of manganese oxide (MnO2) nanostructures highly depend on their crystallographic phase and structure. In this work, MnO2 nanostructures (α-MnO2, β-MnO2 and δ-MnO2) with high crystallinity and different morphology are prepared through a simple, mild and controllable hydrothermal method at 120 °C. [Mn(C8H4O4) (H2O)2]n, a water insoluble metal-organic framework (Mn-MOF), can efficiently react with KMnO4 at different pH, which results in the generation of α-MnO2, β-MnO2 and δ-MnO2. The size of MnO2 nanostructures can be easily adjusted by controlling the ratio of Mn(II)/Mn(VII). The as-prepared MnO2 nanostructures with different structures and sizes are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), and N2 adsorption/desorption. Among three samples, the layered δ-MnO2 nanostructures with Mn(II)/Mn(VII) = 2.0 show a specific surface area of 240 m2·g−1, specific capacitance of 416 F·g−1 at 0.5 A·g−1, which can be explained as both adsorption/desorption and intercalation/deintercalation process. The energy density of the asymmetric supercapacitor constructed by MnO2 and activated carbon (AC) is 23.2 W·h·kg−1 at a power density of 425 W·kg−1. The controllable synthesis of MnO2 nanostructures with different crystallographic phases based on Mn-MOF may give further insights into supercapacitors. [Display omitted] •Mn(C8H4O4) (H2O)2]n, a water insoluble Mn-MOF was used as precursor.•α-MnO2, β-MnO2, and δ-MnO2 were prepared by adjusting pH.•The morphology of MnO2 was controlled by adjusting the ratio of Mn-MOF to KMnO4.•Ultrathin δ-MnO2 with high specific surface area revealed high specific capacitance.•The charge storage mechanism included the adsorption and intercalation process.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.154524</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Activated carbon ; Adsorption ; Crystallography ; Desorption ; Electron microscopes ; Field emission microscopy ; Flux density ; Hydrothermal synthesis ; Manganese dioxide ; Manganese oxide ; Manganese oxides ; Metal-organic framework ; Metal-organic frameworks ; Morphology ; Nanostructure ; Photoelectrons ; Potassium permanganate ; Specific capacitance ; Stability ; Supercapacitor ; Supercapacitors ; Synthesis ; X ray photoelectron spectroscopy</subject><ispartof>Journal of alloys and compounds, 2020-07, Vol.830, p.154524, Article 154524</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 25, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-327905b49f7bca828147444db2498ebc69272ee4a402fa5d34dc8f8bafaa5fb53</citedby><cites>FETCH-LOGICAL-c337t-327905b49f7bca828147444db2498ebc69272ee4a402fa5d34dc8f8bafaa5fb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yuan, Yankai</creatorcontrib><creatorcontrib>Zhu, Jingyi</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Li, Shuni</creatorcontrib><creatorcontrib>Jin, Pujun</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><title>Facile synthesis of manganese oxide nanostructures with different crystallographic phase and morphology for supercapacitors</title><title>Journal of alloys and compounds</title><description>The charge storage performances of manganese oxide (MnO2) nanostructures highly depend on their crystallographic phase and structure. In this work, MnO2 nanostructures (α-MnO2, β-MnO2 and δ-MnO2) with high crystallinity and different morphology are prepared through a simple, mild and controllable hydrothermal method at 120 °C. [Mn(C8H4O4) (H2O)2]n, a water insoluble metal-organic framework (Mn-MOF), can efficiently react with KMnO4 at different pH, which results in the generation of α-MnO2, β-MnO2 and δ-MnO2. The size of MnO2 nanostructures can be easily adjusted by controlling the ratio of Mn(II)/Mn(VII). The as-prepared MnO2 nanostructures with different structures and sizes are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), and N2 adsorption/desorption. Among three samples, the layered δ-MnO2 nanostructures with Mn(II)/Mn(VII) = 2.0 show a specific surface area of 240 m2·g−1, specific capacitance of 416 F·g−1 at 0.5 A·g−1, which can be explained as both adsorption/desorption and intercalation/deintercalation process. The energy density of the asymmetric supercapacitor constructed by MnO2 and activated carbon (AC) is 23.2 W·h·kg−1 at a power density of 425 W·kg−1. The controllable synthesis of MnO2 nanostructures with different crystallographic phases based on Mn-MOF may give further insights into supercapacitors. [Display omitted] •Mn(C8H4O4) (H2O)2]n, a water insoluble Mn-MOF was used as precursor.•α-MnO2, β-MnO2, and δ-MnO2 were prepared by adjusting pH.•The morphology of MnO2 was controlled by adjusting the ratio of Mn-MOF to KMnO4.•Ultrathin δ-MnO2 with high specific surface area revealed high specific capacitance.•The charge storage mechanism included the adsorption and intercalation process.</description><subject>Activated carbon</subject><subject>Adsorption</subject><subject>Crystallography</subject><subject>Desorption</subject><subject>Electron microscopes</subject><subject>Field emission microscopy</subject><subject>Flux density</subject><subject>Hydrothermal synthesis</subject><subject>Manganese dioxide</subject><subject>Manganese oxide</subject><subject>Manganese oxides</subject><subject>Metal-organic framework</subject><subject>Metal-organic frameworks</subject><subject>Morphology</subject><subject>Nanostructure</subject><subject>Photoelectrons</subject><subject>Potassium permanganate</subject><subject>Specific capacitance</subject><subject>Stability</subject><subject>Supercapacitor</subject><subject>Supercapacitors</subject><subject>Synthesis</subject><subject>X ray photoelectron spectroscopy</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE-LFDEQxYMoOK5-BCHgucf87U6fRBZXhQUveg7V6cp2mpmkTdLq4Jc3y-zdU0HVe6-qfoS85ezIGe_fr8cVTieXzkfBROtppYV6Rg7cDLJTfT8-Jwc2Ct0ZacxL8qqUlTHGR8kP5O8duHBCWi6xLlhCocnTM8QHiFiQpj9hRhohplLz7uqesdDfoS50Dt5jxlipy5dS2wHpIcO2BEe3BZoV4kzPKW9LapML9SnTsm-YHWxtZU25vCYvPJwKvnmqN-TH3afvt1-6-2-fv95-vO-clEPtpBhGpic1-mFyYIThalBKzZNQo8HJ9aMYBKICxYQHPUs1O-PNBB5A-0nLG_Lumrvl9HPHUu2a9hzbSiuU1IKPvB-aSl9VLqdSMnq75XCGfLGc2UfOdrVPnO0jZ3vl3Hwfrj5sL_wKmG1xAaPDOWR01c4p_CfhH9UDjQo</recordid><startdate>20200725</startdate><enddate>20200725</enddate><creator>Yuan, Yankai</creator><creator>Zhu, Jingyi</creator><creator>Wang, Ying</creator><creator>Li, Shuni</creator><creator>Jin, Pujun</creator><creator>Chen, Yu</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20200725</creationdate><title>Facile synthesis of manganese oxide nanostructures with different crystallographic phase and morphology for supercapacitors</title><author>Yuan, Yankai ; Zhu, Jingyi ; Wang, Ying ; Li, Shuni ; Jin, Pujun ; Chen, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-327905b49f7bca828147444db2498ebc69272ee4a402fa5d34dc8f8bafaa5fb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activated carbon</topic><topic>Adsorption</topic><topic>Crystallography</topic><topic>Desorption</topic><topic>Electron microscopes</topic><topic>Field emission microscopy</topic><topic>Flux density</topic><topic>Hydrothermal synthesis</topic><topic>Manganese dioxide</topic><topic>Manganese oxide</topic><topic>Manganese oxides</topic><topic>Metal-organic framework</topic><topic>Metal-organic frameworks</topic><topic>Morphology</topic><topic>Nanostructure</topic><topic>Photoelectrons</topic><topic>Potassium permanganate</topic><topic>Specific capacitance</topic><topic>Stability</topic><topic>Supercapacitor</topic><topic>Supercapacitors</topic><topic>Synthesis</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Yankai</creatorcontrib><creatorcontrib>Zhu, Jingyi</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Li, Shuni</creatorcontrib><creatorcontrib>Jin, Pujun</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Yankai</au><au>Zhu, Jingyi</au><au>Wang, Ying</au><au>Li, Shuni</au><au>Jin, Pujun</au><au>Chen, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile synthesis of manganese oxide nanostructures with different crystallographic phase and morphology for supercapacitors</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2020-07-25</date><risdate>2020</risdate><volume>830</volume><spage>154524</spage><pages>154524-</pages><artnum>154524</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>The charge storage performances of manganese oxide (MnO2) nanostructures highly depend on their crystallographic phase and structure. In this work, MnO2 nanostructures (α-MnO2, β-MnO2 and δ-MnO2) with high crystallinity and different morphology are prepared through a simple, mild and controllable hydrothermal method at 120 °C. [Mn(C8H4O4) (H2O)2]n, a water insoluble metal-organic framework (Mn-MOF), can efficiently react with KMnO4 at different pH, which results in the generation of α-MnO2, β-MnO2 and δ-MnO2. The size of MnO2 nanostructures can be easily adjusted by controlling the ratio of Mn(II)/Mn(VII). The as-prepared MnO2 nanostructures with different structures and sizes are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), and N2 adsorption/desorption. Among three samples, the layered δ-MnO2 nanostructures with Mn(II)/Mn(VII) = 2.0 show a specific surface area of 240 m2·g−1, specific capacitance of 416 F·g−1 at 0.5 A·g−1, which can be explained as both adsorption/desorption and intercalation/deintercalation process. The energy density of the asymmetric supercapacitor constructed by MnO2 and activated carbon (AC) is 23.2 W·h·kg−1 at a power density of 425 W·kg−1. The controllable synthesis of MnO2 nanostructures with different crystallographic phases based on Mn-MOF may give further insights into supercapacitors. [Display omitted] •Mn(C8H4O4) (H2O)2]n, a water insoluble Mn-MOF was used as precursor.•α-MnO2, β-MnO2, and δ-MnO2 were prepared by adjusting pH.•The morphology of MnO2 was controlled by adjusting the ratio of Mn-MOF to KMnO4.•Ultrathin δ-MnO2 with high specific surface area revealed high specific capacitance.•The charge storage mechanism included the adsorption and intercalation process.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.154524</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2020-07, Vol.830, p.154524, Article 154524
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2435219167
source ScienceDirect Freedom Collection 2022-2024
subjects Activated carbon
Adsorption
Crystallography
Desorption
Electron microscopes
Field emission microscopy
Flux density
Hydrothermal synthesis
Manganese dioxide
Manganese oxide
Manganese oxides
Metal-organic framework
Metal-organic frameworks
Morphology
Nanostructure
Photoelectrons
Potassium permanganate
Specific capacitance
Stability
Supercapacitor
Supercapacitors
Synthesis
X ray photoelectron spectroscopy
title Facile synthesis of manganese oxide nanostructures with different crystallographic phase and morphology for supercapacitors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20synthesis%20of%20manganese%20oxide%20nanostructures%20with%20different%20crystallographic%20phase%20and%20morphology%20for%20supercapacitors&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Yuan,%20Yankai&rft.date=2020-07-25&rft.volume=830&rft.spage=154524&rft.pages=154524-&rft.artnum=154524&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.154524&rft_dat=%3Cproquest_cross%3E2435219167%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-327905b49f7bca828147444db2498ebc69272ee4a402fa5d34dc8f8bafaa5fb53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2435219167&rft_id=info:pmid/&rfr_iscdi=true