Loading…

Proof of a q-supercongruence conjectured by Guo and Schlosser

In this paper, we confirm the following conjecture of Guo and Schlosser: for any odd integer n > 1 and M = ( n + 1 ) / 2 or n - 1 , ∑ k = 0 M [ 4 k - 1 ] q 2 [ 4 k - 1 ] 2 ( q - 2 ; q 4 ) k 4 ( q 4 ; q 4 ) k 4 q 4 k ≡ ( 2 q + 2 q - 1 - 1 ) [ n ] q 2 4 ( mod [ n ] q 2 4 Φ n ( q 2 ) ) , where [ n ]...

Full description

Saved in:
Bibliographic Details
Published in:Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2020-10, Vol.114 (4), Article 190
Main Authors: Li, Long, Wang, Su-Dan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we confirm the following conjecture of Guo and Schlosser: for any odd integer n > 1 and M = ( n + 1 ) / 2 or n - 1 , ∑ k = 0 M [ 4 k - 1 ] q 2 [ 4 k - 1 ] 2 ( q - 2 ; q 4 ) k 4 ( q 4 ; q 4 ) k 4 q 4 k ≡ ( 2 q + 2 q - 1 - 1 ) [ n ] q 2 4 ( mod [ n ] q 2 4 Φ n ( q 2 ) ) , where [ n ] = [ n ] q = ( 1 - q n ) / ( 1 - q ) , ( a ; q ) 0 = 1 , ( a ; q ) k = ( 1 - a ) ( 1 - a q ) ⋯ ( 1 - a q k - 1 ) for k ≥ 1 and Φ n ( q ) denotes the n -th cyclotomic polynomial.
ISSN:1578-7303
1579-1505
DOI:10.1007/s13398-020-00923-2