Loading…

Turbulent UV Lidar BSE-5

An eye-safe turbulent UV (355 nm) lidar BSE-5 designed for the study of atmospheric turbulence is described. Lidar works on the basis of the backscatter enhancement effect, which occurs when a light wave propagates twice in a random medium. The design of the lidar is based on a transceiving afocal M...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric and oceanic optics 2020-07, Vol.33 (4), p.406-414
Main Authors: Razenkov, I. A., Nadeev, A. I., Zaitsev, N. G., Gordeev, E. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An eye-safe turbulent UV (355 nm) lidar BSE-5 designed for the study of atmospheric turbulence is described. Lidar works on the basis of the backscatter enhancement effect, which occurs when a light wave propagates twice in a random medium. The design of the lidar is based on a transceiving afocal Mersen telescope, which supports thermomechanical stability during long-term operation of the device. To reduce the telescope size, the edges of the primary mirror have been cut off, because they are not used during the lidar operation. The lidar was tested at Tolmachevo airport, Novosibirsk. During the tests, the turbulence was continuously monitored over a runway and over the aircraft parking. The lidar confidently recorded a turbulent wake of any aircraft during takeoff and landing. The lifetime of a strong artificial turbulence over the airfield was found to be 2–3 min.
ISSN:1024-8560
2070-0393
DOI:10.1134/S1024856020040107