Loading…
Fréchet differentiability of mild solutions to SPDEs with respect to the initial datum
We establish n -th-order Fréchet differentiability with respect to the initial datum of mild solutions to a class of jump diffusions in Hilbert spaces. In particular, the coefficients are Lipschitz-continuous, but their derivatives of order higher than one can grow polynomially, and the (multiplicat...
Saved in:
Published in: | Journal of evolution equations 2020-09, Vol.20 (3), p.1093-1130 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We establish
n
-th-order Fréchet differentiability with respect to the initial datum of mild solutions to a class of jump diffusions in Hilbert spaces. In particular, the coefficients are Lipschitz-continuous, but their derivatives of order higher than one can grow polynomially, and the (multiplicative) noise sources are a cylindrical Wiener process and a quasi-left-continuous integer-valued random measure. As preliminary steps, we prove well-posedness in the mild sense for this class of equations, as well as first-order Gâteaux differentiability of their solutions with respect to the initial datum, extending previous results by Marinelli, Prévôt, and Röckner in several ways. The differentiability results obtained here are a fundamental step to construct classical solutions to non-local Kolmogorov equations with sufficiently regular coefficients by probabilistic means. |
---|---|
ISSN: | 1424-3199 1424-3202 |
DOI: | 10.1007/s00028-019-00546-0 |