Loading…
ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm
We study the problem of solving strongly convex and smooth unconstrained optimization problems using stochastic first-order algorithms. We devise a novel algorithm, referred to as Recursive One-Over-T SGD (ROOT-SGD), based on an easily implementable, recursive averaging of past stochastic gradients....
Saved in:
Published in: | arXiv.org 2024-09 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the problem of solving strongly convex and smooth unconstrained optimization problems using stochastic first-order algorithms. We devise a novel algorithm, referred to as Recursive One-Over-T SGD (ROOT-SGD), based on an easily implementable, recursive averaging of past stochastic gradients. We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample, nonasymptotic sense and an asymptotic sense. On the non-asymptotic side, we prove risk bounds on the last iterate of ROOT-SGD with leading-order terms that match the optimal statistical risk with a unity pre-factor, along with a higher-order term that scales at the sharp rate of \(O(n^{-3/2})\) under the Lipschitz condition on the Hessian matrix. On the asymptotic side, we show that when a mild, one-point Hessian continuity condition is imposed, the rescaled last iterate of (multi-epoch) ROOT-SGD converges asymptotically to a Gaussian limit with the Cramér-Rao optimal asymptotic covariance, for a broad range of step-size choices. |
---|---|
ISSN: | 2331-8422 |