Loading…
ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm
We study the problem of solving strongly convex and smooth unconstrained optimization problems using stochastic first-order algorithms. We devise a novel algorithm, referred to as Recursive One-Over-T SGD (ROOT-SGD), based on an easily implementable, recursive averaging of past stochastic gradients....
Saved in:
Published in: | arXiv.org 2024-09 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Li, Chris Junchi Mou, Wenlong Wainwright, Martin J Jordan, Michael I |
description | We study the problem of solving strongly convex and smooth unconstrained optimization problems using stochastic first-order algorithms. We devise a novel algorithm, referred to as Recursive One-Over-T SGD (ROOT-SGD), based on an easily implementable, recursive averaging of past stochastic gradients. We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample, nonasymptotic sense and an asymptotic sense. On the non-asymptotic side, we prove risk bounds on the last iterate of ROOT-SGD with leading-order terms that match the optimal statistical risk with a unity pre-factor, along with a higher-order term that scales at the sharp rate of \(O(n^{-3/2})\) under the Lipschitz condition on the Hessian matrix. On the asymptotic side, we show that when a mild, one-point Hessian continuity condition is imposed, the rescaled last iterate of (multi-epoch) ROOT-SGD converges asymptotically to a Gaussian limit with the Cramér-Rao optimal asymptotic covariance, for a broad range of step-size choices. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2438805701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438805701</sourcerecordid><originalsourceid>FETCH-proquest_journals_24388057013</originalsourceid><addsrcrecordid>eNqNyrsOgjAYQOHGxESivMOfOJOUFoS4Ea8TRGEnjVYoKW1ty-Db6-Dg6HSG78xQQCiNozwhZIFC5waMMdlkJE1pgC7Xqmqi-rTfQt0za6DUirnXaLz24uaAqTuUnNmoMl6MTELxg0IBg1qoTnIoZKet8P24QvMHk46H3y7R-nhodufIWP2cuPPtoCerPtSShOY5TjMc0_-uNwXZPlE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438805701</pqid></control><display><type>article</type><title>ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Li, Chris Junchi ; Mou, Wenlong ; Wainwright, Martin J ; Jordan, Michael I</creator><creatorcontrib>Li, Chris Junchi ; Mou, Wenlong ; Wainwright, Martin J ; Jordan, Michael I</creatorcontrib><description>We study the problem of solving strongly convex and smooth unconstrained optimization problems using stochastic first-order algorithms. We devise a novel algorithm, referred to as Recursive One-Over-T SGD (ROOT-SGD), based on an easily implementable, recursive averaging of past stochastic gradients. We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample, nonasymptotic sense and an asymptotic sense. On the non-asymptotic side, we prove risk bounds on the last iterate of ROOT-SGD with leading-order terms that match the optimal statistical risk with a unity pre-factor, along with a higher-order term that scales at the sharp rate of \(O(n^{-3/2})\) under the Lipschitz condition on the Hessian matrix. On the asymptotic side, we show that when a mild, one-point Hessian continuity condition is imposed, the rescaled last iterate of (multi-epoch) ROOT-SGD converges asymptotically to a Gaussian limit with the Cramér-Rao optimal asymptotic covariance, for a broad range of step-size choices.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Approximation ; Asymptotic methods ; Asymptotic properties ; Convergence ; Covariance ; Normal distribution ; Optimization ; Statistical analysis ; Tightness ; Variance</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2438805701?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Li, Chris Junchi</creatorcontrib><creatorcontrib>Mou, Wenlong</creatorcontrib><creatorcontrib>Wainwright, Martin J</creatorcontrib><creatorcontrib>Jordan, Michael I</creatorcontrib><title>ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm</title><title>arXiv.org</title><description>We study the problem of solving strongly convex and smooth unconstrained optimization problems using stochastic first-order algorithms. We devise a novel algorithm, referred to as Recursive One-Over-T SGD (ROOT-SGD), based on an easily implementable, recursive averaging of past stochastic gradients. We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample, nonasymptotic sense and an asymptotic sense. On the non-asymptotic side, we prove risk bounds on the last iterate of ROOT-SGD with leading-order terms that match the optimal statistical risk with a unity pre-factor, along with a higher-order term that scales at the sharp rate of \(O(n^{-3/2})\) under the Lipschitz condition on the Hessian matrix. On the asymptotic side, we show that when a mild, one-point Hessian continuity condition is imposed, the rescaled last iterate of (multi-epoch) ROOT-SGD converges asymptotically to a Gaussian limit with the Cramér-Rao optimal asymptotic covariance, for a broad range of step-size choices.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Convergence</subject><subject>Covariance</subject><subject>Normal distribution</subject><subject>Optimization</subject><subject>Statistical analysis</subject><subject>Tightness</subject><subject>Variance</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrsOgjAYQOHGxESivMOfOJOUFoS4Ea8TRGEnjVYoKW1ty-Db6-Dg6HSG78xQQCiNozwhZIFC5waMMdlkJE1pgC7Xqmqi-rTfQt0za6DUirnXaLz24uaAqTuUnNmoMl6MTELxg0IBg1qoTnIoZKet8P24QvMHk46H3y7R-nhodufIWP2cuPPtoCerPtSShOY5TjMc0_-uNwXZPlE</recordid><startdate>20240917</startdate><enddate>20240917</enddate><creator>Li, Chris Junchi</creator><creator>Mou, Wenlong</creator><creator>Wainwright, Martin J</creator><creator>Jordan, Michael I</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240917</creationdate><title>ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm</title><author>Li, Chris Junchi ; Mou, Wenlong ; Wainwright, Martin J ; Jordan, Michael I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24388057013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Convergence</topic><topic>Covariance</topic><topic>Normal distribution</topic><topic>Optimization</topic><topic>Statistical analysis</topic><topic>Tightness</topic><topic>Variance</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Chris Junchi</creatorcontrib><creatorcontrib>Mou, Wenlong</creatorcontrib><creatorcontrib>Wainwright, Martin J</creatorcontrib><creatorcontrib>Jordan, Michael I</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chris Junchi</au><au>Mou, Wenlong</au><au>Wainwright, Martin J</au><au>Jordan, Michael I</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm</atitle><jtitle>arXiv.org</jtitle><date>2024-09-17</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We study the problem of solving strongly convex and smooth unconstrained optimization problems using stochastic first-order algorithms. We devise a novel algorithm, referred to as Recursive One-Over-T SGD (ROOT-SGD), based on an easily implementable, recursive averaging of past stochastic gradients. We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample, nonasymptotic sense and an asymptotic sense. On the non-asymptotic side, we prove risk bounds on the last iterate of ROOT-SGD with leading-order terms that match the optimal statistical risk with a unity pre-factor, along with a higher-order term that scales at the sharp rate of \(O(n^{-3/2})\) under the Lipschitz condition on the Hessian matrix. On the asymptotic side, we show that when a mild, one-point Hessian continuity condition is imposed, the rescaled last iterate of (multi-epoch) ROOT-SGD converges asymptotically to a Gaussian limit with the Cramér-Rao optimal asymptotic covariance, for a broad range of step-size choices.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2438805701 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms Approximation Asymptotic methods Asymptotic properties Convergence Covariance Normal distribution Optimization Statistical analysis Tightness Variance |
title | ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A03%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=ROOT-SGD:%20Sharp%20Nonasymptotics%20and%20Near-Optimal%20Asymptotics%20in%20a%20Single%20Algorithm&rft.jtitle=arXiv.org&rft.au=Li,%20Chris%20Junchi&rft.date=2024-09-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2438805701%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24388057013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2438805701&rft_id=info:pmid/&rfr_iscdi=true |