Loading…

The second moment of symmetric square L-functions over Gaussian integers

We prove a new upper bound on the second moment of Maass form symmetric square L-functions defined over Gaussian integers. Combining this estimate with the recent result of Balog-Biro-Cherubini-Laaksonen, we improve the error term in the prime geodesic theorem for the Picard manifold.

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-08
Main Authors: Balkanova, Olga, Frolenkov, Dmitry
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We prove a new upper bound on the second moment of Maass form symmetric square L-functions defined over Gaussian integers. Combining this estimate with the recent result of Balog-Biro-Cherubini-Laaksonen, we improve the error term in the prime geodesic theorem for the Picard manifold.
ISSN:2331-8422
DOI:10.48550/arxiv.2008.13399