Loading…

Möbius Homogeneous Hypersurfaces with One Simple Principal Curvature in

Let Möb( ) denote the Möbius transformation group of . A hypersurface f : is called a Möbius homogeneous hypersurface, if there exists a subgroup such that the orbit G ( p ) = { ϕ ( p ) ∣ ϕ ∈ G } = f ( M n ), p ∈ f ( M n ). In this paper, we classify the Möbius homogeneous hypersurfaces in with at m...

Full description

Saved in:
Bibliographic Details
Published in:Acta mathematica Sinica. English series 2020, Vol.36 (9), p.1001-1013
Main Authors: Chen, Ya Yun, Ji, Xiu, Li, Tong Zhu
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let Möb( ) denote the Möbius transformation group of . A hypersurface f : is called a Möbius homogeneous hypersurface, if there exists a subgroup such that the orbit G ( p ) = { ϕ ( p ) ∣ ϕ ∈ G } = f ( M n ), p ∈ f ( M n ). In this paper, we classify the Möbius homogeneous hypersurfaces in with at most one simple principal curvature up to a Möbius transformation.
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-020-9431-0