Loading…
Prediction of the Tensile Strength and Electrical Resistivity of Concrete with Organic Polymer and their Influence on Carbonation Using Data Science and a Machine Learning Technique
The inclusion of additions to concrete blends helps to improve performance in certain conditions. The analysis of two concrete blends was performed, a blend with the addition of a natural organic polymer and a control blend to make predictive models and find a correlation. Tree tests were performed:...
Saved in:
Published in: | Key engineering materials 2020-09, Vol.862, p.72-77 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The inclusion of additions to concrete blends helps to improve performance in certain conditions. The analysis of two concrete blends was performed, a blend with the addition of a natural organic polymer and a control blend to make predictive models and find a correlation. Tree tests were performed: Electrical resistivity (Er) test, Tensile strength (Ft) and Carbonation resistance. One of the most popular non-destructive tests on concrete is , due to the simplicity of measuring readings on concrete elements. It is a non-destructive test that determines the interconnectivity that exists in the concrete cementitious matrix by determining the quality of the concrete. The blend with the addition showed improved performance in all the tests. Data science techniques were used to generate artificial data, the Machine Learning technique (ML) is based on Tree regression (Tr) with satisfactory accuracy to assess the reliability. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.862.72 |