Loading…
Prediction of the Tensile Strength and Electrical Resistivity of Concrete with Organic Polymer and their Influence on Carbonation Using Data Science and a Machine Learning Technique
The inclusion of additions to concrete blends helps to improve performance in certain conditions. The analysis of two concrete blends was performed, a blend with the addition of a natural organic polymer and a control blend to make predictive models and find a correlation. Tree tests were performed:...
Saved in:
Published in: | Key engineering materials 2020-09, Vol.862, p.72-77 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3282-ae71fde237a1e4aa677cfc12a616e9e37d5d3a4dd9b18690dbfc04af2fd98d663 |
---|---|
cites | cdi_FETCH-LOGICAL-c3282-ae71fde237a1e4aa677cfc12a616e9e37d5d3a4dd9b18690dbfc04af2fd98d663 |
container_end_page | 77 |
container_issue | |
container_start_page | 72 |
container_title | Key engineering materials |
container_volume | 862 |
creator | Guzmán-Torres, José Alberto Seras, Marco Antonio Navarrete Domínguez Mota, Francisco Javier Garcia, Hugo Luis Chavez Molina, Wilfrido Martínez Tinoco Ruiz, José Gerardo Guzmán, Elia Mercedes Alonso Arreola Sánchez, Mauricio |
description | The inclusion of additions to concrete blends helps to improve performance in certain conditions. The analysis of two concrete blends was performed, a blend with the addition of a natural organic polymer and a control blend to make predictive models and find a correlation. Tree tests were performed: Electrical resistivity (Er) test, Tensile strength (Ft) and Carbonation resistance. One of the most popular non-destructive tests on concrete is , due to the simplicity of measuring readings on concrete elements. It is a non-destructive test that determines the interconnectivity that exists in the concrete cementitious matrix by determining the quality of the concrete. The blend with the addition showed improved performance in all the tests. Data science techniques were used to generate artificial data, the Machine Learning technique (ML) is based on Tree regression (Tr) with satisfactory accuracy to assess the reliability. |
doi_str_mv | 10.4028/www.scientific.net/KEM.862.72 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441621679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441621679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3282-ae71fde237a1e4aa677cfc12a616e9e37d5d3a4dd9b18690dbfc04af2fd98d663</originalsourceid><addsrcrecordid>eNqNkcFuEzEURUeISi2l_2AJsZzp2DOxZxYIoRCgIlWrNl1bL_Zz8qqpp9gOUT6M_8PTIHXLyl7cc6-eTlF85HXV1qK73O_3VTSEPpEjU3lMlz8X11UnRaXEm-KMSynKXvWzt_lf86bsOyFPi3cxPtZ1wzs-Oyv-3Aa0ZBKNno2OpS2yFfpIA7L7FNBv0paBt2wxoEmBDAzsDiPFRL8pHSZkPnoTMCHbU87ehA14Mux2HA5PGF7YXEqBXXk37NAbZHlqDmE9eniZfYjkN-wrJGD30zU5MVHArsFsySNbIgQ_ZVZotp5-7fB9ceJgiHjx7z0vHr4tVvMf5fLm-9X8y7I0jehECai4sygaBRxbAKmUcYYLkFxij42yM9tAa22_5p3sa7t2pm7BCWf7zkrZnBcfjr3PYcyzMenHcRd8ntSibbkUXKo-pz4dUyaMMQZ0-jnQE4SD5rWeTOlsSr-a0tmUzqZ0NqWVyPznI58C-Jjyka8z_9fwF5niqU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441621679</pqid></control><display><type>article</type><title>Prediction of the Tensile Strength and Electrical Resistivity of Concrete with Organic Polymer and their Influence on Carbonation Using Data Science and a Machine Learning Technique</title><source>Scientific.net Journals</source><creator>Guzmán-Torres, José Alberto ; Seras, Marco Antonio Navarrete ; Domínguez Mota, Francisco Javier ; Garcia, Hugo Luis Chavez ; Molina, Wilfrido Martínez ; Tinoco Ruiz, José Gerardo ; Guzmán, Elia Mercedes Alonso ; Arreola Sánchez, Mauricio</creator><creatorcontrib>Guzmán-Torres, José Alberto ; Seras, Marco Antonio Navarrete ; Domínguez Mota, Francisco Javier ; Garcia, Hugo Luis Chavez ; Molina, Wilfrido Martínez ; Tinoco Ruiz, José Gerardo ; Guzmán, Elia Mercedes Alonso ; Arreola Sánchez, Mauricio</creatorcontrib><description>The inclusion of additions to concrete blends helps to improve performance in certain conditions. The analysis of two concrete blends was performed, a blend with the addition of a natural organic polymer and a control blend to make predictive models and find a correlation. Tree tests were performed: Electrical resistivity (Er) test, Tensile strength (Ft) and Carbonation resistance. One of the most popular non-destructive tests on concrete is , due to the simplicity of measuring readings on concrete elements. It is a non-destructive test that determines the interconnectivity that exists in the concrete cementitious matrix by determining the quality of the concrete. The blend with the addition showed improved performance in all the tests. Data science techniques were used to generate artificial data, the Machine Learning technique (ML) is based on Tree regression (Tr) with satisfactory accuracy to assess the reliability.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.862.72</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Addition polymerization ; Carbonation ; Concrete ; Data science ; Destructive testing ; Electrical resistivity ; Machine learning ; Mixtures ; Nondestructive testing ; Performance enhancement ; Polymers ; Prediction models ; Predictive control ; Regression analysis ; Reliability analysis ; Tensile strength</subject><ispartof>Key engineering materials, 2020-09, Vol.862, p.72-77</ispartof><rights>2020 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Sep 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3282-ae71fde237a1e4aa677cfc12a616e9e37d5d3a4dd9b18690dbfc04af2fd98d663</citedby><cites>FETCH-LOGICAL-c3282-ae71fde237a1e4aa677cfc12a616e9e37d5d3a4dd9b18690dbfc04af2fd98d663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/6060?width=600</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Guzmán-Torres, José Alberto</creatorcontrib><creatorcontrib>Seras, Marco Antonio Navarrete</creatorcontrib><creatorcontrib>Domínguez Mota, Francisco Javier</creatorcontrib><creatorcontrib>Garcia, Hugo Luis Chavez</creatorcontrib><creatorcontrib>Molina, Wilfrido Martínez</creatorcontrib><creatorcontrib>Tinoco Ruiz, José Gerardo</creatorcontrib><creatorcontrib>Guzmán, Elia Mercedes Alonso</creatorcontrib><creatorcontrib>Arreola Sánchez, Mauricio</creatorcontrib><title>Prediction of the Tensile Strength and Electrical Resistivity of Concrete with Organic Polymer and their Influence on Carbonation Using Data Science and a Machine Learning Technique</title><title>Key engineering materials</title><description>The inclusion of additions to concrete blends helps to improve performance in certain conditions. The analysis of two concrete blends was performed, a blend with the addition of a natural organic polymer and a control blend to make predictive models and find a correlation. Tree tests were performed: Electrical resistivity (Er) test, Tensile strength (Ft) and Carbonation resistance. One of the most popular non-destructive tests on concrete is , due to the simplicity of measuring readings on concrete elements. It is a non-destructive test that determines the interconnectivity that exists in the concrete cementitious matrix by determining the quality of the concrete. The blend with the addition showed improved performance in all the tests. Data science techniques were used to generate artificial data, the Machine Learning technique (ML) is based on Tree regression (Tr) with satisfactory accuracy to assess the reliability.</description><subject>Addition polymerization</subject><subject>Carbonation</subject><subject>Concrete</subject><subject>Data science</subject><subject>Destructive testing</subject><subject>Electrical resistivity</subject><subject>Machine learning</subject><subject>Mixtures</subject><subject>Nondestructive testing</subject><subject>Performance enhancement</subject><subject>Polymers</subject><subject>Prediction models</subject><subject>Predictive control</subject><subject>Regression analysis</subject><subject>Reliability analysis</subject><subject>Tensile strength</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkcFuEzEURUeISi2l_2AJsZzp2DOxZxYIoRCgIlWrNl1bL_Zz8qqpp9gOUT6M_8PTIHXLyl7cc6-eTlF85HXV1qK73O_3VTSEPpEjU3lMlz8X11UnRaXEm-KMSynKXvWzt_lf86bsOyFPi3cxPtZ1wzs-Oyv-3Aa0ZBKNno2OpS2yFfpIA7L7FNBv0paBt2wxoEmBDAzsDiPFRL8pHSZkPnoTMCHbU87ehA14Mux2HA5PGF7YXEqBXXk37NAbZHlqDmE9eniZfYjkN-wrJGD30zU5MVHArsFsySNbIgQ_ZVZotp5-7fB9ceJgiHjx7z0vHr4tVvMf5fLm-9X8y7I0jehECai4sygaBRxbAKmUcYYLkFxij42yM9tAa22_5p3sa7t2pm7BCWf7zkrZnBcfjr3PYcyzMenHcRd8ntSibbkUXKo-pz4dUyaMMQZ0-jnQE4SD5rWeTOlsSr-a0tmUzqZ0NqWVyPznI58C-Jjyka8z_9fwF5niqU8</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Guzmán-Torres, José Alberto</creator><creator>Seras, Marco Antonio Navarrete</creator><creator>Domínguez Mota, Francisco Javier</creator><creator>Garcia, Hugo Luis Chavez</creator><creator>Molina, Wilfrido Martínez</creator><creator>Tinoco Ruiz, José Gerardo</creator><creator>Guzmán, Elia Mercedes Alonso</creator><creator>Arreola Sánchez, Mauricio</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200901</creationdate><title>Prediction of the Tensile Strength and Electrical Resistivity of Concrete with Organic Polymer and their Influence on Carbonation Using Data Science and a Machine Learning Technique</title><author>Guzmán-Torres, José Alberto ; Seras, Marco Antonio Navarrete ; Domínguez Mota, Francisco Javier ; Garcia, Hugo Luis Chavez ; Molina, Wilfrido Martínez ; Tinoco Ruiz, José Gerardo ; Guzmán, Elia Mercedes Alonso ; Arreola Sánchez, Mauricio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3282-ae71fde237a1e4aa677cfc12a616e9e37d5d3a4dd9b18690dbfc04af2fd98d663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Addition polymerization</topic><topic>Carbonation</topic><topic>Concrete</topic><topic>Data science</topic><topic>Destructive testing</topic><topic>Electrical resistivity</topic><topic>Machine learning</topic><topic>Mixtures</topic><topic>Nondestructive testing</topic><topic>Performance enhancement</topic><topic>Polymers</topic><topic>Prediction models</topic><topic>Predictive control</topic><topic>Regression analysis</topic><topic>Reliability analysis</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guzmán-Torres, José Alberto</creatorcontrib><creatorcontrib>Seras, Marco Antonio Navarrete</creatorcontrib><creatorcontrib>Domínguez Mota, Francisco Javier</creatorcontrib><creatorcontrib>Garcia, Hugo Luis Chavez</creatorcontrib><creatorcontrib>Molina, Wilfrido Martínez</creatorcontrib><creatorcontrib>Tinoco Ruiz, José Gerardo</creatorcontrib><creatorcontrib>Guzmán, Elia Mercedes Alonso</creatorcontrib><creatorcontrib>Arreola Sánchez, Mauricio</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guzmán-Torres, José Alberto</au><au>Seras, Marco Antonio Navarrete</au><au>Domínguez Mota, Francisco Javier</au><au>Garcia, Hugo Luis Chavez</au><au>Molina, Wilfrido Martínez</au><au>Tinoco Ruiz, José Gerardo</au><au>Guzmán, Elia Mercedes Alonso</au><au>Arreola Sánchez, Mauricio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of the Tensile Strength and Electrical Resistivity of Concrete with Organic Polymer and their Influence on Carbonation Using Data Science and a Machine Learning Technique</atitle><jtitle>Key engineering materials</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>862</volume><spage>72</spage><epage>77</epage><pages>72-77</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>The inclusion of additions to concrete blends helps to improve performance in certain conditions. The analysis of two concrete blends was performed, a blend with the addition of a natural organic polymer and a control blend to make predictive models and find a correlation. Tree tests were performed: Electrical resistivity (Er) test, Tensile strength (Ft) and Carbonation resistance. One of the most popular non-destructive tests on concrete is , due to the simplicity of measuring readings on concrete elements. It is a non-destructive test that determines the interconnectivity that exists in the concrete cementitious matrix by determining the quality of the concrete. The blend with the addition showed improved performance in all the tests. Data science techniques were used to generate artificial data, the Machine Learning technique (ML) is based on Tree regression (Tr) with satisfactory accuracy to assess the reliability.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.862.72</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1013-9826 |
ispartof | Key engineering materials, 2020-09, Vol.862, p.72-77 |
issn | 1013-9826 1662-9795 1662-9795 |
language | eng |
recordid | cdi_proquest_journals_2441621679 |
source | Scientific.net Journals |
subjects | Addition polymerization Carbonation Concrete Data science Destructive testing Electrical resistivity Machine learning Mixtures Nondestructive testing Performance enhancement Polymers Prediction models Predictive control Regression analysis Reliability analysis Tensile strength |
title | Prediction of the Tensile Strength and Electrical Resistivity of Concrete with Organic Polymer and their Influence on Carbonation Using Data Science and a Machine Learning Technique |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20the%20Tensile%20Strength%20and%20Electrical%20Resistivity%20of%20Concrete%20with%20Organic%20Polymer%20and%20their%20Influence%20on%20Carbonation%20Using%20Data%20Science%20and%20a%20Machine%20Learning%20Technique&rft.jtitle=Key%20engineering%20materials&rft.au=Guzm%C3%A1n-Torres,%20Jos%C3%A9%20Alberto&rft.date=2020-09-01&rft.volume=862&rft.spage=72&rft.epage=77&rft.pages=72-77&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/www.scientific.net/KEM.862.72&rft_dat=%3Cproquest_cross%3E2441621679%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3282-ae71fde237a1e4aa677cfc12a616e9e37d5d3a4dd9b18690dbfc04af2fd98d663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2441621679&rft_id=info:pmid/&rfr_iscdi=true |