Loading…

Prediction of the Tensile Strength and Electrical Resistivity of Concrete with Organic Polymer and their Influence on Carbonation Using Data Science and a Machine Learning Technique

The inclusion of additions to concrete blends helps to improve performance in certain conditions. The analysis of two concrete blends was performed, a blend with the addition of a natural organic polymer and a control blend to make predictive models and find a correlation. Tree tests were performed:...

Full description

Saved in:
Bibliographic Details
Published in:Key engineering materials 2020-09, Vol.862, p.72-77
Main Authors: Guzmán-Torres, José Alberto, Seras, Marco Antonio Navarrete, Domínguez Mota, Francisco Javier, Garcia, Hugo Luis Chavez, Molina, Wilfrido Martínez, Tinoco Ruiz, José Gerardo, Guzmán, Elia Mercedes Alonso, Arreola Sánchez, Mauricio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3282-ae71fde237a1e4aa677cfc12a616e9e37d5d3a4dd9b18690dbfc04af2fd98d663
cites cdi_FETCH-LOGICAL-c3282-ae71fde237a1e4aa677cfc12a616e9e37d5d3a4dd9b18690dbfc04af2fd98d663
container_end_page 77
container_issue
container_start_page 72
container_title Key engineering materials
container_volume 862
creator Guzmán-Torres, José Alberto
Seras, Marco Antonio Navarrete
Domínguez Mota, Francisco Javier
Garcia, Hugo Luis Chavez
Molina, Wilfrido Martínez
Tinoco Ruiz, José Gerardo
Guzmán, Elia Mercedes Alonso
Arreola Sánchez, Mauricio
description The inclusion of additions to concrete blends helps to improve performance in certain conditions. The analysis of two concrete blends was performed, a blend with the addition of a natural organic polymer and a control blend to make predictive models and find a correlation. Tree tests were performed: Electrical resistivity (Er) test, Tensile strength (Ft) and Carbonation resistance. One of the most popular non-destructive tests on concrete is , due to the simplicity of measuring readings on concrete elements. It is a non-destructive test that determines the interconnectivity that exists in the concrete cementitious matrix by determining the quality of the concrete. The blend with the addition showed improved performance in all the tests. Data science techniques were used to generate artificial data, the Machine Learning technique (ML) is based on Tree regression (Tr) with satisfactory accuracy to assess the reliability.
doi_str_mv 10.4028/www.scientific.net/KEM.862.72
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441621679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441621679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3282-ae71fde237a1e4aa677cfc12a616e9e37d5d3a4dd9b18690dbfc04af2fd98d663</originalsourceid><addsrcrecordid>eNqNkcFuEzEURUeISi2l_2AJsZzp2DOxZxYIoRCgIlWrNl1bL_Zz8qqpp9gOUT6M_8PTIHXLyl7cc6-eTlF85HXV1qK73O_3VTSEPpEjU3lMlz8X11UnRaXEm-KMSynKXvWzt_lf86bsOyFPi3cxPtZ1wzs-Oyv-3Aa0ZBKNno2OpS2yFfpIA7L7FNBv0paBt2wxoEmBDAzsDiPFRL8pHSZkPnoTMCHbU87ehA14Mux2HA5PGF7YXEqBXXk37NAbZHlqDmE9eniZfYjkN-wrJGD30zU5MVHArsFsySNbIgQ_ZVZotp5-7fB9ceJgiHjx7z0vHr4tVvMf5fLm-9X8y7I0jehECai4sygaBRxbAKmUcYYLkFxij42yM9tAa22_5p3sa7t2pm7BCWf7zkrZnBcfjr3PYcyzMenHcRd8ntSibbkUXKo-pz4dUyaMMQZ0-jnQE4SD5rWeTOlsSr-a0tmUzqZ0NqWVyPznI58C-Jjyka8z_9fwF5niqU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441621679</pqid></control><display><type>article</type><title>Prediction of the Tensile Strength and Electrical Resistivity of Concrete with Organic Polymer and their Influence on Carbonation Using Data Science and a Machine Learning Technique</title><source>Scientific.net Journals</source><creator>Guzmán-Torres, José Alberto ; Seras, Marco Antonio Navarrete ; Domínguez Mota, Francisco Javier ; Garcia, Hugo Luis Chavez ; Molina, Wilfrido Martínez ; Tinoco Ruiz, José Gerardo ; Guzmán, Elia Mercedes Alonso ; Arreola Sánchez, Mauricio</creator><creatorcontrib>Guzmán-Torres, José Alberto ; Seras, Marco Antonio Navarrete ; Domínguez Mota, Francisco Javier ; Garcia, Hugo Luis Chavez ; Molina, Wilfrido Martínez ; Tinoco Ruiz, José Gerardo ; Guzmán, Elia Mercedes Alonso ; Arreola Sánchez, Mauricio</creatorcontrib><description>The inclusion of additions to concrete blends helps to improve performance in certain conditions. The analysis of two concrete blends was performed, a blend with the addition of a natural organic polymer and a control blend to make predictive models and find a correlation. Tree tests were performed: Electrical resistivity (Er) test, Tensile strength (Ft) and Carbonation resistance. One of the most popular non-destructive tests on concrete is , due to the simplicity of measuring readings on concrete elements. It is a non-destructive test that determines the interconnectivity that exists in the concrete cementitious matrix by determining the quality of the concrete. The blend with the addition showed improved performance in all the tests. Data science techniques were used to generate artificial data, the Machine Learning technique (ML) is based on Tree regression (Tr) with satisfactory accuracy to assess the reliability.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.862.72</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Addition polymerization ; Carbonation ; Concrete ; Data science ; Destructive testing ; Electrical resistivity ; Machine learning ; Mixtures ; Nondestructive testing ; Performance enhancement ; Polymers ; Prediction models ; Predictive control ; Regression analysis ; Reliability analysis ; Tensile strength</subject><ispartof>Key engineering materials, 2020-09, Vol.862, p.72-77</ispartof><rights>2020 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Sep 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3282-ae71fde237a1e4aa677cfc12a616e9e37d5d3a4dd9b18690dbfc04af2fd98d663</citedby><cites>FETCH-LOGICAL-c3282-ae71fde237a1e4aa677cfc12a616e9e37d5d3a4dd9b18690dbfc04af2fd98d663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/6060?width=600</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Guzmán-Torres, José Alberto</creatorcontrib><creatorcontrib>Seras, Marco Antonio Navarrete</creatorcontrib><creatorcontrib>Domínguez Mota, Francisco Javier</creatorcontrib><creatorcontrib>Garcia, Hugo Luis Chavez</creatorcontrib><creatorcontrib>Molina, Wilfrido Martínez</creatorcontrib><creatorcontrib>Tinoco Ruiz, José Gerardo</creatorcontrib><creatorcontrib>Guzmán, Elia Mercedes Alonso</creatorcontrib><creatorcontrib>Arreola Sánchez, Mauricio</creatorcontrib><title>Prediction of the Tensile Strength and Electrical Resistivity of Concrete with Organic Polymer and their Influence on Carbonation Using Data Science and a Machine Learning Technique</title><title>Key engineering materials</title><description>The inclusion of additions to concrete blends helps to improve performance in certain conditions. The analysis of two concrete blends was performed, a blend with the addition of a natural organic polymer and a control blend to make predictive models and find a correlation. Tree tests were performed: Electrical resistivity (Er) test, Tensile strength (Ft) and Carbonation resistance. One of the most popular non-destructive tests on concrete is , due to the simplicity of measuring readings on concrete elements. It is a non-destructive test that determines the interconnectivity that exists in the concrete cementitious matrix by determining the quality of the concrete. The blend with the addition showed improved performance in all the tests. Data science techniques were used to generate artificial data, the Machine Learning technique (ML) is based on Tree regression (Tr) with satisfactory accuracy to assess the reliability.</description><subject>Addition polymerization</subject><subject>Carbonation</subject><subject>Concrete</subject><subject>Data science</subject><subject>Destructive testing</subject><subject>Electrical resistivity</subject><subject>Machine learning</subject><subject>Mixtures</subject><subject>Nondestructive testing</subject><subject>Performance enhancement</subject><subject>Polymers</subject><subject>Prediction models</subject><subject>Predictive control</subject><subject>Regression analysis</subject><subject>Reliability analysis</subject><subject>Tensile strength</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkcFuEzEURUeISi2l_2AJsZzp2DOxZxYIoRCgIlWrNl1bL_Zz8qqpp9gOUT6M_8PTIHXLyl7cc6-eTlF85HXV1qK73O_3VTSEPpEjU3lMlz8X11UnRaXEm-KMSynKXvWzt_lf86bsOyFPi3cxPtZ1wzs-Oyv-3Aa0ZBKNno2OpS2yFfpIA7L7FNBv0paBt2wxoEmBDAzsDiPFRL8pHSZkPnoTMCHbU87ehA14Mux2HA5PGF7YXEqBXXk37NAbZHlqDmE9eniZfYjkN-wrJGD30zU5MVHArsFsySNbIgQ_ZVZotp5-7fB9ceJgiHjx7z0vHr4tVvMf5fLm-9X8y7I0jehECai4sygaBRxbAKmUcYYLkFxij42yM9tAa22_5p3sa7t2pm7BCWf7zkrZnBcfjr3PYcyzMenHcRd8ntSibbkUXKo-pz4dUyaMMQZ0-jnQE4SD5rWeTOlsSr-a0tmUzqZ0NqWVyPznI58C-Jjyka8z_9fwF5niqU8</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Guzmán-Torres, José Alberto</creator><creator>Seras, Marco Antonio Navarrete</creator><creator>Domínguez Mota, Francisco Javier</creator><creator>Garcia, Hugo Luis Chavez</creator><creator>Molina, Wilfrido Martínez</creator><creator>Tinoco Ruiz, José Gerardo</creator><creator>Guzmán, Elia Mercedes Alonso</creator><creator>Arreola Sánchez, Mauricio</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200901</creationdate><title>Prediction of the Tensile Strength and Electrical Resistivity of Concrete with Organic Polymer and their Influence on Carbonation Using Data Science and a Machine Learning Technique</title><author>Guzmán-Torres, José Alberto ; Seras, Marco Antonio Navarrete ; Domínguez Mota, Francisco Javier ; Garcia, Hugo Luis Chavez ; Molina, Wilfrido Martínez ; Tinoco Ruiz, José Gerardo ; Guzmán, Elia Mercedes Alonso ; Arreola Sánchez, Mauricio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3282-ae71fde237a1e4aa677cfc12a616e9e37d5d3a4dd9b18690dbfc04af2fd98d663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Addition polymerization</topic><topic>Carbonation</topic><topic>Concrete</topic><topic>Data science</topic><topic>Destructive testing</topic><topic>Electrical resistivity</topic><topic>Machine learning</topic><topic>Mixtures</topic><topic>Nondestructive testing</topic><topic>Performance enhancement</topic><topic>Polymers</topic><topic>Prediction models</topic><topic>Predictive control</topic><topic>Regression analysis</topic><topic>Reliability analysis</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guzmán-Torres, José Alberto</creatorcontrib><creatorcontrib>Seras, Marco Antonio Navarrete</creatorcontrib><creatorcontrib>Domínguez Mota, Francisco Javier</creatorcontrib><creatorcontrib>Garcia, Hugo Luis Chavez</creatorcontrib><creatorcontrib>Molina, Wilfrido Martínez</creatorcontrib><creatorcontrib>Tinoco Ruiz, José Gerardo</creatorcontrib><creatorcontrib>Guzmán, Elia Mercedes Alonso</creatorcontrib><creatorcontrib>Arreola Sánchez, Mauricio</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guzmán-Torres, José Alberto</au><au>Seras, Marco Antonio Navarrete</au><au>Domínguez Mota, Francisco Javier</au><au>Garcia, Hugo Luis Chavez</au><au>Molina, Wilfrido Martínez</au><au>Tinoco Ruiz, José Gerardo</au><au>Guzmán, Elia Mercedes Alonso</au><au>Arreola Sánchez, Mauricio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of the Tensile Strength and Electrical Resistivity of Concrete with Organic Polymer and their Influence on Carbonation Using Data Science and a Machine Learning Technique</atitle><jtitle>Key engineering materials</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>862</volume><spage>72</spage><epage>77</epage><pages>72-77</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>The inclusion of additions to concrete blends helps to improve performance in certain conditions. The analysis of two concrete blends was performed, a blend with the addition of a natural organic polymer and a control blend to make predictive models and find a correlation. Tree tests were performed: Electrical resistivity (Er) test, Tensile strength (Ft) and Carbonation resistance. One of the most popular non-destructive tests on concrete is , due to the simplicity of measuring readings on concrete elements. It is a non-destructive test that determines the interconnectivity that exists in the concrete cementitious matrix by determining the quality of the concrete. The blend with the addition showed improved performance in all the tests. Data science techniques were used to generate artificial data, the Machine Learning technique (ML) is based on Tree regression (Tr) with satisfactory accuracy to assess the reliability.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.862.72</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1013-9826
ispartof Key engineering materials, 2020-09, Vol.862, p.72-77
issn 1013-9826
1662-9795
1662-9795
language eng
recordid cdi_proquest_journals_2441621679
source Scientific.net Journals
subjects Addition polymerization
Carbonation
Concrete
Data science
Destructive testing
Electrical resistivity
Machine learning
Mixtures
Nondestructive testing
Performance enhancement
Polymers
Prediction models
Predictive control
Regression analysis
Reliability analysis
Tensile strength
title Prediction of the Tensile Strength and Electrical Resistivity of Concrete with Organic Polymer and their Influence on Carbonation Using Data Science and a Machine Learning Technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20the%20Tensile%20Strength%20and%20Electrical%20Resistivity%20of%20Concrete%20with%20Organic%20Polymer%20and%20their%20Influence%20on%20Carbonation%20Using%20Data%20Science%20and%20a%20Machine%20Learning%20Technique&rft.jtitle=Key%20engineering%20materials&rft.au=Guzm%C3%A1n-Torres,%20Jos%C3%A9%20Alberto&rft.date=2020-09-01&rft.volume=862&rft.spage=72&rft.epage=77&rft.pages=72-77&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/www.scientific.net/KEM.862.72&rft_dat=%3Cproquest_cross%3E2441621679%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3282-ae71fde237a1e4aa677cfc12a616e9e37d5d3a4dd9b18690dbfc04af2fd98d663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2441621679&rft_id=info:pmid/&rfr_iscdi=true