Loading…

Facile synthesis of α-Fe2O3/Nb2O5 heterostructure for advanced Li-Ion batteries

A facile double hydrothermal method for the fabrication of α-Fe2O3/Nb2O5 heterostructure is employed to compare and evaluate the structural properties of the negative electrode for Li-ion batteries (LIBs) features. Basically, in this research work, we accumulate the α-Fe2O3 nanorods (NRs), with high...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2020-10, Vol.837, p.155294, Article 155294
Main Authors: Khatoon, Rabia, Guo, Yichuan, Attique, Sanam, Khan, Karim, Treen, Ayesha Khan, Haq, Mahmood Ul, Tang, Haichao, Chen, Hongwen, Tian, Yang, Nisar, Mohammad, Din, Salah Ud, Lu, Jianguo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A facile double hydrothermal method for the fabrication of α-Fe2O3/Nb2O5 heterostructure is employed to compare and evaluate the structural properties of the negative electrode for Li-ion batteries (LIBs) features. Basically, in this research work, we accumulate the α-Fe2O3 nanorods (NRs), with high specific capacity and less stability, with the Nb2O5 interconnected nanoparticles (INP), having the less specific capacity and high stability, to see the electrode features of the synthesized heterostructure in LIBs. Based on our calculated results, the synthesized α-Fe2O3/Nb2O5 heterostructure has a high specific capacitance and good stability, are established. Cyclic Voltammetry (CV), Galvanostatic charge/discharge (GCD) and cycling test are done in the voltage range of 0–3 V. The specific capacity of the α-Fe2O3/Nb2O5 heterostructure is enhanced from 178 mAh g−1 to 1125 mAh g−1 with excellent cyclic stability for 500 cycles. Moreover, the superior electronic conductivity, higher specific capacity, high rate capability, and high reversibility and upgraded performance of the α-Fe2O3/Nb2O5 heterostructure as LIBs electrode are attributed due to unique structural features, high specific surface area and synergic effect of the heterostructure. Up to the best of our knowledge, the synthesized heterostructure yet not been applied in the LIBs. The promising results in application inferred that it can be a significant step to meet the demands of future industrial-level devices. •A facile double hydrothermal method has been applied for the synthesis of α-Fe2O3/Nb2O5 heterostructure.•α-Fe2O3/Nb2O5 heterostructure is employed as an anode material for Li-ion batteries.•Excellent cyclic stability with high capacity of 1125 mAh g−1 exhibited in Li-ion batteries.
ISSN:0925-8388
1873-4669
DOI:10.1016/j.jallcom.2020.155294