Loading…

Inversion of operator pencils on Banach space using Jordan chains when the generalized resolvent has an isolated essential singularity

We assume that the generalized resolvent for a bounded linear operator pencil mapping one Banach space onto another has an isolated essential singularity at the origin and is analytic on some annular region of the complex plane centred at the origin. In such cases the resolvent operator can be repre...

Full description

Saved in:
Bibliographic Details
Published in:Linear algebra and its applications 2020-06, Vol.595, p.33-62
Main Authors: Albrecht, Amie, Howlett, Phil, Verma, Geetika
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We assume that the generalized resolvent for a bounded linear operator pencil mapping one Banach space onto another has an isolated essential singularity at the origin and is analytic on some annular region of the complex plane centred at the origin. In such cases the resolvent operator can be represented on the annulus by a convergent Laurent series and the spectral set has two components—a bounded component inside the inner boundary of the annulus and an unbounded component outside the outer boundary. In this paper we prove that the complementary spectral separation projections on the domain space are uniquely determined by the respective generating subspaces for the associated infinite-length generalized Jordan chains of vectors and that the domain space is the direct sum of these two subspaces. We show that the images of the generating subspaces under the mapping defined by the pencil provide a corresponding direct sum decomposition for the range space and that this is simply the decomposition defined by the complementary spectral separation projections on the range space. If the domain space has a Schauder basis we show that the separated systems of fundamental equations are reduced to two semi-infinite systems of matrix equations which can be solved recursively to obtain a basic solution and thereby determine the Laurent series coefficients for the resolvent operator on the given annular region.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2020.02.030