Loading…

An investigation of ultrasonic based hydrogen production

A comprehensive numerical study is performed to establish a link between the primary effect of the acoustic cavitation bubble activity and the consequent effect of the chemical kinetics mechanism associated with the sonochemical process. In this work, we studied a possible reaction kinetics mechanis...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) 2020-08, Vol.205, p.118006, Article 118006
Main Authors: Rashwan, Sherif S., Dincer, Ibrahim, Mohany, Atef
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A comprehensive numerical study is performed to establish a link between the primary effect of the acoustic cavitation bubble activity and the consequent effect of the chemical kinetics mechanism associated with the sonochemical process. In this work, we studied a possible reaction kinetics mechanism for the sonochemical hydrogen production, which we called the sonohydrogen process. The reaction kinetics mechanism consists of 19 reversible reactions taking place inside the acoustic cavitation micro-bubble at different conditions. The simulation of the reaction kinetics is validated and utilized to quantify the amount of hydrogen produced by a single bubble that is initially saturated with water vapor/oxygen. The results from the bubble dynamics model and the chemical kinetics model are compared with two different experiments available in the literature. Furthermore, the work evaluated the energy efficiency of this technology to produce 1 μmol of hydrogen in kWh. The present results revealed that the bubble temperature governs the chemical reaction mechanism of the water vapor dissociation. The minimum bubble temperature required for a slight production of hydrogen is 3000 K, the hydrogen is in the range of 5.46E-06 – 8.59E-06 μmol/h. At the following conditions of an ultrasonic frequency of 20 kHz, an acoustic power of 30 W, and a bubble temperature of 6000 K, the amount of hydrogen produced is 1.05E-03 μmol/h. The higher the bubble temperature, the faster the chemical reaction rate, which will lead to a higher hydrogen production rate. In terms of performance, the sonohydrogen process produces 2.22E-02 μmol/kWh. •Establishing a link between the acoustic bubble and chemical effects.•A possible chemical reaction mechanism is reported.•The kinetics model is validated to previous work in literature.•The effect of the bubble temperature on hydrogen production rate.•The sono-hydrogen process produces 2.22E-02 μmol/kWh.
ISSN:0360-5442
1873-6785
DOI:10.1016/j.energy.2020.118006