Loading…
Personal Sound Zones by Subband Filtering and Time Domain Optimization
Personal Sound Zones (PSZ) systems aim to render independent sound signals to multiple listeners within a room by using arrays of loudspeakers. One of the algorithms used to provide PSZ is Weighted Pressure Matching (wPM), which computes the filters required to render a desired response in the liste...
Saved in:
Published in: | IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2020, Vol.28, p.2684-2696 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Personal Sound Zones (PSZ) systems aim to render independent sound signals to multiple listeners within a room by using arrays of loudspeakers. One of the algorithms used to provide PSZ is Weighted Pressure Matching (wPM), which computes the filters required to render a desired response in the listening zones while reducing the acoustic energy arriving to the quiet zones. This algorithm can be formulated in time and frequency domains. In general, the time-domain formulation (wPM-TD) can obtain good performance with shorter filters and delays than the frequency-domain formulation (wPM-FD). However, wPM-TD requires higher computation for obtaining the optimal filters. In this article, we propose a novel approach to the wPM algorithm named Weighted Pressure Matching with Subband Decomposition (wPM-SD), which formulates an independent time-domain optimization problem for each of the subbands of a Generalized Discrete Fourier Transform (GDFT) filter bank. Solving the optimization independently for each subband has two main advantages: 1) lower computational complexity than wPM-TD to compute the optimal filters; 2) higher versatility than the classic wPM algorithms, as it allows different configurations (sets of loudspeakers, filter lengths, etc.) in each subband. Moreover, filtering the input signals with a GDFT filter bank (as in wPM-SD) requires lower computational effort than broadband filtering (as in wPM-TD and wPM-FD), which is beneficial for practical PSZ systems. We present experimental evaluations showing that wPM-SD offers very similar performance to wPM-TD. In addition, two cases where the versatility of wPM-SD is beneficial for a PSZ system are presented and experimentally validated. |
---|---|
ISSN: | 2329-9290 2329-9304 |
DOI: | 10.1109/TASLP.2020.3023628 |