Loading…
On the potential of recurrent neural networks for modeling path dependent plasticity
The mathematical description of elastoplasticity is a highly complex problem due to the possible change from elastic to elasto-plastic behavior (and vice-versa) as a function of the loading path. Advanced physics-based plasticity models usually feature numerous internal variables (often of tensorial...
Saved in:
Published in: | Journal of the mechanics and physics of solids 2020-10, Vol.143, p.103972, Article 103972 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The mathematical description of elastoplasticity is a highly complex problem due to the possible change from elastic to elasto-plastic behavior (and vice-versa) as a function of the loading path. Advanced physics-based plasticity models usually feature numerous internal variables (often of tensorial nature) along with a set of evolution equations and complementary conditions. In the present work, an attempt is made to come up with a machine-learning based model that can replicate the predictions anisotropic Yld2000-2d model with homogeneous anisotropic hardening (HAH). For this, a series of modeling problems of increasing complexity is formulated and sequentially addressed using neural network models. It is demonstrated that basic fully-connected neural network models can capture the characteristic non-linearities in the uniaxial stress-strain response such as the Bauschinger effect, permanent softening or latent hardening. A neural network with gated recurrent units (GRUs) and fully-connected layer is proposed for the modeling of plane stress plasticity for arbitrary loading paths. After training and testing the model through comparison with the Yld2000-2d/HAH model, the recurrent neural network model is also used to model the multi-axial stress-strain response of a two-dimensional foam. Here, the comparison with the results from unit cell simulations provided another validation of the proposed data-driven modeling approach. |
---|---|
ISSN: | 0022-5096 1873-4782 |
DOI: | 10.1016/j.jmps.2020.103972 |