Loading…

Variational Feature Disentangling for Fine-Grained Few-Shot Classification

Fine-grained few-shot recognition often suffers from the problem of training data scarcity for novel categories.The network tends to overfit and does not generalize well to unseen classes due to insufficient training data. Many methods have been proposed to synthesize additional data to support the...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-08
Main Authors: Xu, Jingyi, Le, Hieu, Huang, Mingzhen, Athar, ShahRukh, Samaras, Dimitris
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fine-grained few-shot recognition often suffers from the problem of training data scarcity for novel categories.The network tends to overfit and does not generalize well to unseen classes due to insufficient training data. Many methods have been proposed to synthesize additional data to support the training. In this paper, we focus one enlarging the intra-class variance of the unseen class to improve few-shot classification performance. We assume that the distribution of intra-class variance generalizes across the base class and the novel class. Thus, the intra-class variance of the base set can be transferred to the novel set for feature augmentation. Specifically, we first model the distribution of intra-class variance on the base set via variational inference. Then the learned distribution is transferred to the novel set to generate additional features, which are used together with the original ones to train a classifier. Experimental results show a significant boost over the state-of-the-art methods on the challenging fine-grained few-shot image classification benchmarks.
ISSN:2331-8422