Loading…
Propagation of minimality in the supercooled Stefan problem
Supercooled Stefan problems describe the evolution of the boundary between the solid and liquid phases of a substance, where the liquid is assumed to be cooled below its freezing point. Following the methodology of Delarue, Nadtochiy and Shkolnikov, we construct solutions to the one-phase one-dimens...
Saved in:
Published in: | arXiv.org 2022-06 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Supercooled Stefan problems describe the evolution of the boundary between the solid and liquid phases of a substance, where the liquid is assumed to be cooled below its freezing point. Following the methodology of Delarue, Nadtochiy and Shkolnikov, we construct solutions to the one-phase one-dimensional supercooled Stefan problem through a certain McKean-Vlasov equation, which allows to define global solutions even in the presence of blow-ups. Solutions to the McKean-Vlasov equation arise as mean-field limits of particle systems interacting through hitting times, which is important for systemic risk modeling. Our main contributions are: (i) we prove a general tightness theorem for the Skorokhod M1-topology which applies to processes that can be decomposed into a continuous and a monotone part. (ii) We prove propagation of chaos for a perturbed version of the particle system for general initial conditions. (iii) We prove a conjecture of Delarue, Nadtochiy and Shkolnikov, relating the solution concepts of so-called minimal and physical solutions, showing that minimal solutions of the McKean-Vlasov equation are physical whenever the initial condition is integrable. |
---|---|
ISSN: | 2331-8422 |