Loading…

Electronic properties of slid bilayer graphene: effective models in low energy range

A generic tight-binding model for 2 p z electrons in bilayer graphene (BLG) systems is used to derive the expression of effective Hamiltonians for low-energy states around the K-points of hexagonal Brillouin zone. The obtained effective Hamiltonians are validated for two kinds of AA-like and AB-like...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2020-10, Vol.93 (10), Article 190
Main Authors: Ho, Sy-Ta, Le, Hoang Anh, Nguyen, Van Duy, Do, Van-Nam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A generic tight-binding model for 2 p z electrons in bilayer graphene (BLG) systems is used to derive the expression of effective Hamiltonians for low-energy states around the K-points of hexagonal Brillouin zone. The obtained effective Hamiltonians are validated for two kinds of AA-like and AB-like slid bilayer graphene (SBG). It is shown that, for the former case, the electronic structure is characterized by a gauge vector field which couples to the sliding vector to deform the band structure of the AA-stacked configuration as a perturbation. For the latter case, since the A–B interlayer coupling is the most dominant, it allows separating the energy bands and lowering the 4 × 4 Hamiltonian into a 2 × 2 effective model. A gauge vector field also appears, but different from the AA-like SBGs, it plays the role similar to an in-plane magnetic field. Graphical abstract
ISSN:1434-6028
1434-6036
DOI:10.1140/epjb/e2020-10328-6