Loading…
Unknottedness of real Lagrangian tori in S2×S2
We prove the Hamiltonian unknottedness of real Lagrangian tori in the monotone S 2 × S 2 , namely any real Lagrangian torus in S 2 × S 2 is Hamiltonian isotopic to the Clifford torus. The proof is based on a neck-stretching argument, Gromov’s foliation theorem, and the Cieliebak–Schwingenheuer crite...
Saved in:
Published in: | Mathematische annalen 2020, Vol.378 (3-4), p.891-905 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove the Hamiltonian unknottedness of real Lagrangian tori in the monotone
S
2
×
S
2
, namely any real Lagrangian torus in
S
2
×
S
2
is Hamiltonian isotopic to the Clifford torus. The proof is based on a neck-stretching argument, Gromov’s foliation theorem, and the Cieliebak–Schwingenheuer criterion. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-020-02049-7 |