Loading…

Unknottedness of real Lagrangian tori in S2×S2

We prove the Hamiltonian unknottedness of real Lagrangian tori in the monotone S 2 × S 2 , namely any real Lagrangian torus in S 2 × S 2 is Hamiltonian isotopic to the Clifford torus. The proof is based on a neck-stretching argument, Gromov’s foliation theorem, and the Cieliebak–Schwingenheuer crite...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische annalen 2020, Vol.378 (3-4), p.891-905
Main Author: Kim, Joontae
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We prove the Hamiltonian unknottedness of real Lagrangian tori in the monotone S 2 × S 2 , namely any real Lagrangian torus in S 2 × S 2 is Hamiltonian isotopic to the Clifford torus. The proof is based on a neck-stretching argument, Gromov’s foliation theorem, and the Cieliebak–Schwingenheuer criterion.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-020-02049-7