Loading…
The Maki-Thompson Rumor Model on Infinite Cayley Trees
In this paper we study the Maki-Thompson rumor model on infinite Cayley trees. The basic version of the model is defined by assuming that a population represented by a graph is subdivided into three classes of individuals: ignorants, spreaders and stiflers. A spreader tells the rumor to any of its (...
Saved in:
Published in: | Journal of statistical physics 2020-11, Vol.181 (4), p.1204-1217 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we study the Maki-Thompson rumor model on infinite Cayley trees. The basic version of the model is defined by assuming that a population represented by a graph is subdivided into three classes of individuals: ignorants, spreaders and stiflers. A spreader tells the rumor to any of its (nearest) ignorant neighbors at rate one. At the same rate, a spreader becomes a stifler after a contact with other (nearest neighbor) spreaders, or stiflers. In this work we study this model on infinite Cayley trees, which is formulated as a continuous-times Markov chain, and we extend our analysis to the generalization in which each spreader ceases to propagate the rumor right after being involved in a given number of stifling experiences. We study sufficient conditions under which the rumor either becomes extinct or survives with positive probability. |
---|---|
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1007/s10955-020-02623-y |