Loading…

H. pylorimodulates DC functions via T4SS/TNFα/p38-dependent SOCS3 expression

Background Helicobacter pylori (H. pylori) is a gram-negative bacterium that chronically infects approximately 50% of the world’s human population. While in most cases the infection remains asymptomatic, 10% of infected individuals develop gastric pathologies and 1–3% progress to gastric cancer. Alt...

Full description

Saved in:
Bibliographic Details
Published in:Cell communication and signaling 2020-01, Vol.18, p.1
Main Authors: Sarajlic, Muamera, Neuper, Theresa, Vetter, Julia, Schaller, Susanne, Klicznik, Maria M, Gratz, Iris K, Wessler, Silja, Posselt, Gernot, Horejs-Hoeck, Jutta
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Helicobacter pylori (H. pylori) is a gram-negative bacterium that chronically infects approximately 50% of the world’s human population. While in most cases the infection remains asymptomatic, 10% of infected individuals develop gastric pathologies and 1–3% progress to gastric cancer. AlthoughH. pylori induces severe inflammatory responses, the host’s immune system fails to clear the pathogen and H. pylori can persist in the human stomach for decades. As suppressor of cytokine signaling (SOCS) proteins are important feedback regulators limiting inflammatory responses, we hypothesized thatH. pylori could modulate the host’s immune responses by inducing SOCS expression. Methods The phenotype of human monocyte-derived DCs (moDCs) infected withH. pylori was analyzed by flow cytometry and multiplex technology. SOCS expression levels were monitored by qPCR and signaling studies were conducted by means of Western blot. For functional studies, RNA interference-based silencing of SOCS1–3 and co-cultures with CD4+ T cells were performed. Results We show that H. pylori positive gastritis patients express significantly higher SOCS3, but not SOCS1 andSOCS2, levels compared to H. pylori negative patients. Moreover, infection of human moDCs with H. pylori rapidly inducesSOCS3 expression, which requires the type IV secretion system (T4SS), release of TNFα, and signaling via the MAP kinase p38, but appears to be independent of TLR2, TLR4, MEK1/2 and STAT proteins. Silencing of SOCS3 expression in moDCs prior to H. pylori infection resulted in increased release of both pro- and anti-inflammatory cytokines, upregulation of PD-L1, and decreased T-cell proliferation. Conclusions This study shows that H. pyloriinduces SOCS3 via an autocrine loop involving the T4SS and TNFα and p38 signaling. Moreover, we demonstrate that high levels of SOCS3 in DCs dampen PD-L1 expression on DCs, which in turn drives T-cell proliferation. Video Abstract
ISSN:1478-811X
DOI:10.1186/s12964-020-00655-1