Loading…
Deep Orthogonal Transform Feature for Image Denoising
Recently, CNN-based image denoising has been investigated and shows better performance than conventional vision based techniques. However, there are still a couple of limits that are weak partly in restoring image details like textured regions or produce other artifacts. In this paper, we introduce...
Saved in:
Published in: | IEEE access 2020-01, Vol.8, p.1-1 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, CNN-based image denoising has been investigated and shows better performance than conventional vision based techniques. However, there are still a couple of limits that are weak partly in restoring image details like textured regions or produce other artifacts. In this paper, we introduce noiseseparable orthogonal transform features into a neural denoising framework. We specifically choose wavelet and PCA as an orthogonal transform, which achieved a good denoising performance conventionally. In addition to spatial image signals, the orthogonal transform features (OTFs) are fed into a denoising network. For the guide of the denoising process, we also concatenate OTFs from the image denoised by the existing method. This can play a role of prior for learning a denoising process. It has been confirmed that our proposed multi-input network can achieve better denoising performance than other single-input networks. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.2986827 |