Loading…

Macro-Scale Tread Patterns for Traction in the Intestine

Goal: Tread patterns are widely used to increase traction on different substrates, with the tread scale, geometry and material being tailored to the application. This work explores the efficacy of using macro-scale tread patterns for a medical application involving a colon substrate - renowned for i...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2020-11, Vol.67 (11), p.3262-3273
Main Authors: Norton, Joseph C., Boyle, Jordan H., Alazmani, Ali, Culmer, Pete R., Neville, Anne
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Goal: Tread patterns are widely used to increase traction on different substrates, with the tread scale, geometry and material being tailored to the application. This work explores the efficacy of using macro-scale tread patterns for a medical application involving a colon substrate - renowned for its low friction characteristics. Methods: Current literature was first summarized before an experimental approach was used, based on a custom test rig with ex vivo porcine colon, to assess different macro-scale tread patterns. Performance was based on increasing traction while avoiding significant trauma. Repeated testing (n = 16) was used to obtain robust results. Results: A macro-scale tread pattern can increase the traction coefficient significantly, with a static traction coefficient of 0.74 ± 0.22 and a dynamic traction coefficient of 0.35 ± 0.04 compared to a smooth (on the macro-scale) Control (0.132 ± 0.055 and 0.054 ± 0.015, respectively). Decreasing the scale and spacing between the tread features reduced apparent trauma but also reduced the traction coefficient. Conclusion: Significant traction can be achieved on colon tissue using a macro-scale tread but a compromise between traction (large feature sizes) and trauma (small feature sizes) may have to be made. Significance: This work provides greater insight into the complex frictional mechanisms of the intestine and gives suggestions for developing functional tread surfaces for a wide range of clinical applications.
ISSN:0018-9294
1558-2531
DOI:10.1109/TBME.2020.2982242