Loading…
On the robustness of noise-blind low-rank recovery from rank-one measurements
We prove new results about the robustness of well-known convex noise-blind optimization formulations for the reconstruction of low-rank matrices from underdetermined linear measurements. Our results are applicable for symmetric rank-one measurements as used in a formulation of the phase retrieval pr...
Saved in:
Published in: | arXiv.org 2020-10 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove new results about the robustness of well-known convex noise-blind optimization formulations for the reconstruction of low-rank matrices from underdetermined linear measurements. Our results are applicable for symmetric rank-one measurements as used in a formulation of the phase retrieval problem. We obtain these results by establishing that with high probability rank-one measurement operators defined by i.i.d. Gaussian vectors exhibit the so-called Schatten-1 quotient property, which corresponds to a lower bound for the inradius of their image of the nuclear norm (Schatten-1) unit ball. We complement our analysis by numerical experiments comparing the solutions of noise-blind and noise-aware formulations. These experiments confirm that noise-blind optimization methods exhibit comparable robustness to noise-aware formulations. Keywords: low-rank matrix recovery, phase retrieval, quotient property, noise-blind, robustness, nuclear norm minimization |
---|---|
ISSN: | 2331-8422 |