Loading…

Weak and entropy approximation of nonhyperbolic measures: a geometrical approach

We study C 1-robustly transitive and nonhyperbolic diffeomorphisms having a partially hyperbolic splitting with one-dimensional central bundle whose strong un-/stable foliations are both minimal. In dimension 3, an important class of examples of such systems is given by those with a simple closed pe...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical proceedings of the Cambridge Philosophical Society 2020-11, Vol.169 (3), p.507-545, Article 507
Main Authors: DÍAZ, LORENZO J., GELFERT, KATRIN, SANTIAGO, BRUNO
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study C 1-robustly transitive and nonhyperbolic diffeomorphisms having a partially hyperbolic splitting with one-dimensional central bundle whose strong un-/stable foliations are both minimal. In dimension 3, an important class of examples of such systems is given by those with a simple closed periodic curve tangent to the central bundle. We prove that there is a C 1-open and dense subset of such diffeomorphisms such that every nonhyperbolic ergodic measure (i.e. with zero central exponent) can be approximated in the weak* topology and in entropy by measures supported in basic sets with positive (negative) central Lyapunov exponent. Our method also allows to show how entropy changes across measures with central Lyapunov exponent close to zero. We also prove that any nonhyperbolic ergodic measure is in the intersection of the convex hulls of the measures with positive central exponent and with negative central exponent.
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004119000276