Loading…

sEMG-Based Gesture Recognition With Embedded Virtual Hand Poses and Adversarial Learning

To improve the accuracy of surface electromyography (sEMG)-based gesture recognition, we present a novel hybrid approach that combines real sEMG signals with corresponding virtual hand poses. The virtual hand poses are generated by means of a proposed cross-modal association model constructed based...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2019, Vol.7, p.104108-104120
Main Authors: Hu, Yu, Wong, Yongkang, Dai, Qingfeng, Kankanhalli, Mohan, Geng, Weidong, Li, Xiangdong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To improve the accuracy of surface electromyography (sEMG)-based gesture recognition, we present a novel hybrid approach that combines real sEMG signals with corresponding virtual hand poses. The virtual hand poses are generated by means of a proposed cross-modal association model constructed based on the adversarial learning to capture the intrinsic relationship between the sEMG signals and the hand poses. We report comprehensive evaluations of the proposed approach for both frame- and window-based sEMG gesture recognitions on seven-sparse-multichannel and four-high-density-benchmark databases. The experimental results show that the proposed approach achieves significant improvements in sEMG-based gesture recognition compared to existing works. For frame-based sEMG gesture recognition, the recognition accuracy of the proposed framework is increased by an average of +5.2% on the sparse multichannel sEMG databases and by an average of +6.7% on the high-density sEMG databases compared to the existing methods. For window-based sEMG gesture recognition, the state-of-the-art recognition accuracies on three of the high-density sEMG databases are already higher than 99%, i.e., almost saturated; nevertheless, we achieve a +0.2% improvement. For the remaining eight sEMG databases, the average improvement with the proposed framework for the window-based approach is +2.5%.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2930005