Loading…
Soft Sensor Model Development for Cobalt Oxalate Synthesis Process Based on Adaptive Gaussian Mixture Regression
Average particle size is a critical quality variable for optimal operation of the cobalt oxalate synthesis process. However, the measurement for this variable is often achieved from offline laboratory assaying procedure with low sampling rate and low reliability. Therefore, a data-driven soft sensor...
Saved in:
Published in: | IEEE access 2019, Vol.7, p.118749-118763 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Average particle size is a critical quality variable for optimal operation of the cobalt oxalate synthesis process. However, the measurement for this variable is often achieved from offline laboratory assaying procedure with low sampling rate and low reliability. Therefore, a data-driven soft sensor model based on adaptive Gaussian mixture regression (AGMR) is presented in this paper. Firstly, a GMR based soft sensor model is developed for predicting the average particle size. Secondly, the prediction uncertainty obtained from the GMR model is used to assess the performance of the current soft sensor model. Thirdly, a dual updating algorithm based on the model performance assessment is constructed to track the time-varying behavior of the synthesis process. In the updating method, bias updating and moving window model updating methods are performed in turns based on the results of model performance assessment. The dual updating mechanism can avoid blind updating. Finally, a numerical example and a real industrial cobalt oxalate synthesis process application are used to demonstrate the effectiveness of the proposed method. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2019.2936542 |