Loading…

Soft Sensor Model Development for Cobalt Oxalate Synthesis Process Based on Adaptive Gaussian Mixture Regression

Average particle size is a critical quality variable for optimal operation of the cobalt oxalate synthesis process. However, the measurement for this variable is often achieved from offline laboratory assaying procedure with low sampling rate and low reliability. Therefore, a data-driven soft sensor...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2019, Vol.7, p.118749-118763
Main Authors: Zhang, Shuning, Chu, Fei, Deng, Guanlong, Wang, Fuli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c458t-cff72d087d21ac0c85b996cbfa08e8583ac58f5bf7370ba2f0b97950dbe6f1503
cites cdi_FETCH-LOGICAL-c458t-cff72d087d21ac0c85b996cbfa08e8583ac58f5bf7370ba2f0b97950dbe6f1503
container_end_page 118763
container_issue
container_start_page 118749
container_title IEEE access
container_volume 7
creator Zhang, Shuning
Chu, Fei
Deng, Guanlong
Wang, Fuli
description Average particle size is a critical quality variable for optimal operation of the cobalt oxalate synthesis process. However, the measurement for this variable is often achieved from offline laboratory assaying procedure with low sampling rate and low reliability. Therefore, a data-driven soft sensor model based on adaptive Gaussian mixture regression (AGMR) is presented in this paper. Firstly, a GMR based soft sensor model is developed for predicting the average particle size. Secondly, the prediction uncertainty obtained from the GMR model is used to assess the performance of the current soft sensor model. Thirdly, a dual updating algorithm based on the model performance assessment is constructed to track the time-varying behavior of the synthesis process. In the updating method, bias updating and moving window model updating methods are performed in turns based on the results of model performance assessment. The dual updating mechanism can avoid blind updating. Finally, a numerical example and a real industrial cobalt oxalate synthesis process application are used to demonstrate the effectiveness of the proposed method.
doi_str_mv 10.1109/ACCESS.2019.2936542
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455636749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8808889</ieee_id><doaj_id>oai_doaj_org_article_1a9f187628f54b63a88f2a7343a5104f</doaj_id><sourcerecordid>2455636749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-cff72d087d21ac0c85b996cbfa08e8583ac58f5bf7370ba2f0b97950dbe6f1503</originalsourceid><addsrcrecordid>eNpNkUtP3TAQhSPUSiDKL2BjifW99SN-LW9TSpFAVE27tibJGHIV4tT2RfDvaxqEOhuPjs45Y-mrqnNGt4xR-3nXNJdtu-WU2S23QsmaH1UnnCm7EVKoD__tx9VZSntaxhRJ6pNqaYPPpMU5hUhuw4AT-YpPOIXlEedMfFGb0MGUyd0zTJCRtC9zfsA0JvIjhh5TIl8g4UDCTHYDLHl8QnIFh5RGmMnt-JwPEclPvI_FOob5U_XRw5Tw7O09rX5_u_zVfN_c3F1dN7ubTV9Lkze995oP1OiBM-hpb2Rnreo7D9SgkUZAL42XnddC0w64p53VVtKhQ-WZpOK0ul57hwB7t8TxEeKLCzC6f0KI9w5iHvsJHQPrmdGKl8K6UwKM8Ry0qAVIRmtfui7WriWGPwdM2e3DIc7l-47XUiqhdG2LS6yuPoaUIvr3q4y6V1JuJeVeSbk3UiV1vqZGRHxPGEONMVb8BctVj-Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455636749</pqid></control><display><type>article</type><title>Soft Sensor Model Development for Cobalt Oxalate Synthesis Process Based on Adaptive Gaussian Mixture Regression</title><source>IEEE Xplore Open Access Journals</source><creator>Zhang, Shuning ; Chu, Fei ; Deng, Guanlong ; Wang, Fuli</creator><creatorcontrib>Zhang, Shuning ; Chu, Fei ; Deng, Guanlong ; Wang, Fuli</creatorcontrib><description>Average particle size is a critical quality variable for optimal operation of the cobalt oxalate synthesis process. However, the measurement for this variable is often achieved from offline laboratory assaying procedure with low sampling rate and low reliability. Therefore, a data-driven soft sensor model based on adaptive Gaussian mixture regression (AGMR) is presented in this paper. Firstly, a GMR based soft sensor model is developed for predicting the average particle size. Secondly, the prediction uncertainty obtained from the GMR model is used to assess the performance of the current soft sensor model. Thirdly, a dual updating algorithm based on the model performance assessment is constructed to track the time-varying behavior of the synthesis process. In the updating method, bias updating and moving window model updating methods are performed in turns based on the results of model performance assessment. The dual updating mechanism can avoid blind updating. Finally, a numerical example and a real industrial cobalt oxalate synthesis process application are used to demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2936542</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Algorithms ; Atmospheric measurements ; Cobalt ; Cobalt oxalate synthesis process ; Cobalt oxalates ; Computational modeling ; Gaussian mixture regression ; Gaussian process ; model performance assessment ; Model updating ; Numerical models ; Particle size ; Performance assessment ; Predictions ; Predictive models ; Sensors ; soft sensor ; Synthesis ; Uncertainty</subject><ispartof>IEEE access, 2019, Vol.7, p.118749-118763</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-cff72d087d21ac0c85b996cbfa08e8583ac58f5bf7370ba2f0b97950dbe6f1503</citedby><cites>FETCH-LOGICAL-c458t-cff72d087d21ac0c85b996cbfa08e8583ac58f5bf7370ba2f0b97950dbe6f1503</cites><orcidid>0000-0002-9115-6873 ; 0000-0003-0939-0861 ; 0000-0002-0891-6748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8808889$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zhang, Shuning</creatorcontrib><creatorcontrib>Chu, Fei</creatorcontrib><creatorcontrib>Deng, Guanlong</creatorcontrib><creatorcontrib>Wang, Fuli</creatorcontrib><title>Soft Sensor Model Development for Cobalt Oxalate Synthesis Process Based on Adaptive Gaussian Mixture Regression</title><title>IEEE access</title><addtitle>Access</addtitle><description>Average particle size is a critical quality variable for optimal operation of the cobalt oxalate synthesis process. However, the measurement for this variable is often achieved from offline laboratory assaying procedure with low sampling rate and low reliability. Therefore, a data-driven soft sensor model based on adaptive Gaussian mixture regression (AGMR) is presented in this paper. Firstly, a GMR based soft sensor model is developed for predicting the average particle size. Secondly, the prediction uncertainty obtained from the GMR model is used to assess the performance of the current soft sensor model. Thirdly, a dual updating algorithm based on the model performance assessment is constructed to track the time-varying behavior of the synthesis process. In the updating method, bias updating and moving window model updating methods are performed in turns based on the results of model performance assessment. The dual updating mechanism can avoid blind updating. Finally, a numerical example and a real industrial cobalt oxalate synthesis process application are used to demonstrate the effectiveness of the proposed method.</description><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Atmospheric measurements</subject><subject>Cobalt</subject><subject>Cobalt oxalate synthesis process</subject><subject>Cobalt oxalates</subject><subject>Computational modeling</subject><subject>Gaussian mixture regression</subject><subject>Gaussian process</subject><subject>model performance assessment</subject><subject>Model updating</subject><subject>Numerical models</subject><subject>Particle size</subject><subject>Performance assessment</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Sensors</subject><subject>soft sensor</subject><subject>Synthesis</subject><subject>Uncertainty</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtP3TAQhSPUSiDKL2BjifW99SN-LW9TSpFAVE27tibJGHIV4tT2RfDvaxqEOhuPjs45Y-mrqnNGt4xR-3nXNJdtu-WU2S23QsmaH1UnnCm7EVKoD__tx9VZSntaxhRJ6pNqaYPPpMU5hUhuw4AT-YpPOIXlEedMfFGb0MGUyd0zTJCRtC9zfsA0JvIjhh5TIl8g4UDCTHYDLHl8QnIFh5RGmMnt-JwPEclPvI_FOob5U_XRw5Tw7O09rX5_u_zVfN_c3F1dN7ubTV9Lkze995oP1OiBM-hpb2Rnreo7D9SgkUZAL42XnddC0w64p53VVtKhQ-WZpOK0ul57hwB7t8TxEeKLCzC6f0KI9w5iHvsJHQPrmdGKl8K6UwKM8Ry0qAVIRmtfui7WriWGPwdM2e3DIc7l-47XUiqhdG2LS6yuPoaUIvr3q4y6V1JuJeVeSbk3UiV1vqZGRHxPGEONMVb8BctVj-Y</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Zhang, Shuning</creator><creator>Chu, Fei</creator><creator>Deng, Guanlong</creator><creator>Wang, Fuli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9115-6873</orcidid><orcidid>https://orcid.org/0000-0003-0939-0861</orcidid><orcidid>https://orcid.org/0000-0002-0891-6748</orcidid></search><sort><creationdate>2019</creationdate><title>Soft Sensor Model Development for Cobalt Oxalate Synthesis Process Based on Adaptive Gaussian Mixture Regression</title><author>Zhang, Shuning ; Chu, Fei ; Deng, Guanlong ; Wang, Fuli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-cff72d087d21ac0c85b996cbfa08e8583ac58f5bf7370ba2f0b97950dbe6f1503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Atmospheric measurements</topic><topic>Cobalt</topic><topic>Cobalt oxalate synthesis process</topic><topic>Cobalt oxalates</topic><topic>Computational modeling</topic><topic>Gaussian mixture regression</topic><topic>Gaussian process</topic><topic>model performance assessment</topic><topic>Model updating</topic><topic>Numerical models</topic><topic>Particle size</topic><topic>Performance assessment</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Sensors</topic><topic>soft sensor</topic><topic>Synthesis</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shuning</creatorcontrib><creatorcontrib>Chu, Fei</creatorcontrib><creatorcontrib>Deng, Guanlong</creatorcontrib><creatorcontrib>Wang, Fuli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shuning</au><au>Chu, Fei</au><au>Deng, Guanlong</au><au>Wang, Fuli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft Sensor Model Development for Cobalt Oxalate Synthesis Process Based on Adaptive Gaussian Mixture Regression</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>118749</spage><epage>118763</epage><pages>118749-118763</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Average particle size is a critical quality variable for optimal operation of the cobalt oxalate synthesis process. However, the measurement for this variable is often achieved from offline laboratory assaying procedure with low sampling rate and low reliability. Therefore, a data-driven soft sensor model based on adaptive Gaussian mixture regression (AGMR) is presented in this paper. Firstly, a GMR based soft sensor model is developed for predicting the average particle size. Secondly, the prediction uncertainty obtained from the GMR model is used to assess the performance of the current soft sensor model. Thirdly, a dual updating algorithm based on the model performance assessment is constructed to track the time-varying behavior of the synthesis process. In the updating method, bias updating and moving window model updating methods are performed in turns based on the results of model performance assessment. The dual updating mechanism can avoid blind updating. Finally, a numerical example and a real industrial cobalt oxalate synthesis process application are used to demonstrate the effectiveness of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2936542</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9115-6873</orcidid><orcidid>https://orcid.org/0000-0003-0939-0861</orcidid><orcidid>https://orcid.org/0000-0002-0891-6748</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.118749-118763
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455636749
source IEEE Xplore Open Access Journals
subjects Adaptation models
Algorithms
Atmospheric measurements
Cobalt
Cobalt oxalate synthesis process
Cobalt oxalates
Computational modeling
Gaussian mixture regression
Gaussian process
model performance assessment
Model updating
Numerical models
Particle size
Performance assessment
Predictions
Predictive models
Sensors
soft sensor
Synthesis
Uncertainty
title Soft Sensor Model Development for Cobalt Oxalate Synthesis Process Based on Adaptive Gaussian Mixture Regression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20Sensor%20Model%20Development%20for%20Cobalt%20Oxalate%20Synthesis%20Process%20Based%20on%20Adaptive%20Gaussian%20Mixture%20Regression&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Shuning&rft.date=2019&rft.volume=7&rft.spage=118749&rft.epage=118763&rft.pages=118749-118763&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2936542&rft_dat=%3Cproquest_ieee_%3E2455636749%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-cff72d087d21ac0c85b996cbfa08e8583ac58f5bf7370ba2f0b97950dbe6f1503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455636749&rft_id=info:pmid/&rft_ieee_id=8808889&rfr_iscdi=true