Loading…
Soft Sensor Model Development for Cobalt Oxalate Synthesis Process Based on Adaptive Gaussian Mixture Regression
Average particle size is a critical quality variable for optimal operation of the cobalt oxalate synthesis process. However, the measurement for this variable is often achieved from offline laboratory assaying procedure with low sampling rate and low reliability. Therefore, a data-driven soft sensor...
Saved in:
Published in: | IEEE access 2019, Vol.7, p.118749-118763 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c458t-cff72d087d21ac0c85b996cbfa08e8583ac58f5bf7370ba2f0b97950dbe6f1503 |
---|---|
cites | cdi_FETCH-LOGICAL-c458t-cff72d087d21ac0c85b996cbfa08e8583ac58f5bf7370ba2f0b97950dbe6f1503 |
container_end_page | 118763 |
container_issue | |
container_start_page | 118749 |
container_title | IEEE access |
container_volume | 7 |
creator | Zhang, Shuning Chu, Fei Deng, Guanlong Wang, Fuli |
description | Average particle size is a critical quality variable for optimal operation of the cobalt oxalate synthesis process. However, the measurement for this variable is often achieved from offline laboratory assaying procedure with low sampling rate and low reliability. Therefore, a data-driven soft sensor model based on adaptive Gaussian mixture regression (AGMR) is presented in this paper. Firstly, a GMR based soft sensor model is developed for predicting the average particle size. Secondly, the prediction uncertainty obtained from the GMR model is used to assess the performance of the current soft sensor model. Thirdly, a dual updating algorithm based on the model performance assessment is constructed to track the time-varying behavior of the synthesis process. In the updating method, bias updating and moving window model updating methods are performed in turns based on the results of model performance assessment. The dual updating mechanism can avoid blind updating. Finally, a numerical example and a real industrial cobalt oxalate synthesis process application are used to demonstrate the effectiveness of the proposed method. |
doi_str_mv | 10.1109/ACCESS.2019.2936542 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2455636749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8808889</ieee_id><doaj_id>oai_doaj_org_article_1a9f187628f54b63a88f2a7343a5104f</doaj_id><sourcerecordid>2455636749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-cff72d087d21ac0c85b996cbfa08e8583ac58f5bf7370ba2f0b97950dbe6f1503</originalsourceid><addsrcrecordid>eNpNkUtP3TAQhSPUSiDKL2BjifW99SN-LW9TSpFAVE27tibJGHIV4tT2RfDvaxqEOhuPjs45Y-mrqnNGt4xR-3nXNJdtu-WU2S23QsmaH1UnnCm7EVKoD__tx9VZSntaxhRJ6pNqaYPPpMU5hUhuw4AT-YpPOIXlEedMfFGb0MGUyd0zTJCRtC9zfsA0JvIjhh5TIl8g4UDCTHYDLHl8QnIFh5RGmMnt-JwPEclPvI_FOob5U_XRw5Tw7O09rX5_u_zVfN_c3F1dN7ubTV9Lkze995oP1OiBM-hpb2Rnreo7D9SgkUZAL42XnddC0w64p53VVtKhQ-WZpOK0ul57hwB7t8TxEeKLCzC6f0KI9w5iHvsJHQPrmdGKl8K6UwKM8Ry0qAVIRmtfui7WriWGPwdM2e3DIc7l-47XUiqhdG2LS6yuPoaUIvr3q4y6V1JuJeVeSbk3UiV1vqZGRHxPGEONMVb8BctVj-Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455636749</pqid></control><display><type>article</type><title>Soft Sensor Model Development for Cobalt Oxalate Synthesis Process Based on Adaptive Gaussian Mixture Regression</title><source>IEEE Xplore Open Access Journals</source><creator>Zhang, Shuning ; Chu, Fei ; Deng, Guanlong ; Wang, Fuli</creator><creatorcontrib>Zhang, Shuning ; Chu, Fei ; Deng, Guanlong ; Wang, Fuli</creatorcontrib><description>Average particle size is a critical quality variable for optimal operation of the cobalt oxalate synthesis process. However, the measurement for this variable is often achieved from offline laboratory assaying procedure with low sampling rate and low reliability. Therefore, a data-driven soft sensor model based on adaptive Gaussian mixture regression (AGMR) is presented in this paper. Firstly, a GMR based soft sensor model is developed for predicting the average particle size. Secondly, the prediction uncertainty obtained from the GMR model is used to assess the performance of the current soft sensor model. Thirdly, a dual updating algorithm based on the model performance assessment is constructed to track the time-varying behavior of the synthesis process. In the updating method, bias updating and moving window model updating methods are performed in turns based on the results of model performance assessment. The dual updating mechanism can avoid blind updating. Finally, a numerical example and a real industrial cobalt oxalate synthesis process application are used to demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2936542</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Algorithms ; Atmospheric measurements ; Cobalt ; Cobalt oxalate synthesis process ; Cobalt oxalates ; Computational modeling ; Gaussian mixture regression ; Gaussian process ; model performance assessment ; Model updating ; Numerical models ; Particle size ; Performance assessment ; Predictions ; Predictive models ; Sensors ; soft sensor ; Synthesis ; Uncertainty</subject><ispartof>IEEE access, 2019, Vol.7, p.118749-118763</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-cff72d087d21ac0c85b996cbfa08e8583ac58f5bf7370ba2f0b97950dbe6f1503</citedby><cites>FETCH-LOGICAL-c458t-cff72d087d21ac0c85b996cbfa08e8583ac58f5bf7370ba2f0b97950dbe6f1503</cites><orcidid>0000-0002-9115-6873 ; 0000-0003-0939-0861 ; 0000-0002-0891-6748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8808889$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zhang, Shuning</creatorcontrib><creatorcontrib>Chu, Fei</creatorcontrib><creatorcontrib>Deng, Guanlong</creatorcontrib><creatorcontrib>Wang, Fuli</creatorcontrib><title>Soft Sensor Model Development for Cobalt Oxalate Synthesis Process Based on Adaptive Gaussian Mixture Regression</title><title>IEEE access</title><addtitle>Access</addtitle><description>Average particle size is a critical quality variable for optimal operation of the cobalt oxalate synthesis process. However, the measurement for this variable is often achieved from offline laboratory assaying procedure with low sampling rate and low reliability. Therefore, a data-driven soft sensor model based on adaptive Gaussian mixture regression (AGMR) is presented in this paper. Firstly, a GMR based soft sensor model is developed for predicting the average particle size. Secondly, the prediction uncertainty obtained from the GMR model is used to assess the performance of the current soft sensor model. Thirdly, a dual updating algorithm based on the model performance assessment is constructed to track the time-varying behavior of the synthesis process. In the updating method, bias updating and moving window model updating methods are performed in turns based on the results of model performance assessment. The dual updating mechanism can avoid blind updating. Finally, a numerical example and a real industrial cobalt oxalate synthesis process application are used to demonstrate the effectiveness of the proposed method.</description><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Atmospheric measurements</subject><subject>Cobalt</subject><subject>Cobalt oxalate synthesis process</subject><subject>Cobalt oxalates</subject><subject>Computational modeling</subject><subject>Gaussian mixture regression</subject><subject>Gaussian process</subject><subject>model performance assessment</subject><subject>Model updating</subject><subject>Numerical models</subject><subject>Particle size</subject><subject>Performance assessment</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Sensors</subject><subject>soft sensor</subject><subject>Synthesis</subject><subject>Uncertainty</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtP3TAQhSPUSiDKL2BjifW99SN-LW9TSpFAVE27tibJGHIV4tT2RfDvaxqEOhuPjs45Y-mrqnNGt4xR-3nXNJdtu-WU2S23QsmaH1UnnCm7EVKoD__tx9VZSntaxhRJ6pNqaYPPpMU5hUhuw4AT-YpPOIXlEedMfFGb0MGUyd0zTJCRtC9zfsA0JvIjhh5TIl8g4UDCTHYDLHl8QnIFh5RGmMnt-JwPEclPvI_FOob5U_XRw5Tw7O09rX5_u_zVfN_c3F1dN7ubTV9Lkze995oP1OiBM-hpb2Rnreo7D9SgkUZAL42XnddC0w64p53VVtKhQ-WZpOK0ul57hwB7t8TxEeKLCzC6f0KI9w5iHvsJHQPrmdGKl8K6UwKM8Ry0qAVIRmtfui7WriWGPwdM2e3DIc7l-47XUiqhdG2LS6yuPoaUIvr3q4y6V1JuJeVeSbk3UiV1vqZGRHxPGEONMVb8BctVj-Y</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Zhang, Shuning</creator><creator>Chu, Fei</creator><creator>Deng, Guanlong</creator><creator>Wang, Fuli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9115-6873</orcidid><orcidid>https://orcid.org/0000-0003-0939-0861</orcidid><orcidid>https://orcid.org/0000-0002-0891-6748</orcidid></search><sort><creationdate>2019</creationdate><title>Soft Sensor Model Development for Cobalt Oxalate Synthesis Process Based on Adaptive Gaussian Mixture Regression</title><author>Zhang, Shuning ; Chu, Fei ; Deng, Guanlong ; Wang, Fuli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-cff72d087d21ac0c85b996cbfa08e8583ac58f5bf7370ba2f0b97950dbe6f1503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Atmospheric measurements</topic><topic>Cobalt</topic><topic>Cobalt oxalate synthesis process</topic><topic>Cobalt oxalates</topic><topic>Computational modeling</topic><topic>Gaussian mixture regression</topic><topic>Gaussian process</topic><topic>model performance assessment</topic><topic>Model updating</topic><topic>Numerical models</topic><topic>Particle size</topic><topic>Performance assessment</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Sensors</topic><topic>soft sensor</topic><topic>Synthesis</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shuning</creatorcontrib><creatorcontrib>Chu, Fei</creatorcontrib><creatorcontrib>Deng, Guanlong</creatorcontrib><creatorcontrib>Wang, Fuli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shuning</au><au>Chu, Fei</au><au>Deng, Guanlong</au><au>Wang, Fuli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft Sensor Model Development for Cobalt Oxalate Synthesis Process Based on Adaptive Gaussian Mixture Regression</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>118749</spage><epage>118763</epage><pages>118749-118763</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Average particle size is a critical quality variable for optimal operation of the cobalt oxalate synthesis process. However, the measurement for this variable is often achieved from offline laboratory assaying procedure with low sampling rate and low reliability. Therefore, a data-driven soft sensor model based on adaptive Gaussian mixture regression (AGMR) is presented in this paper. Firstly, a GMR based soft sensor model is developed for predicting the average particle size. Secondly, the prediction uncertainty obtained from the GMR model is used to assess the performance of the current soft sensor model. Thirdly, a dual updating algorithm based on the model performance assessment is constructed to track the time-varying behavior of the synthesis process. In the updating method, bias updating and moving window model updating methods are performed in turns based on the results of model performance assessment. The dual updating mechanism can avoid blind updating. Finally, a numerical example and a real industrial cobalt oxalate synthesis process application are used to demonstrate the effectiveness of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2936542</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9115-6873</orcidid><orcidid>https://orcid.org/0000-0003-0939-0861</orcidid><orcidid>https://orcid.org/0000-0002-0891-6748</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.118749-118763 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455636749 |
source | IEEE Xplore Open Access Journals |
subjects | Adaptation models Algorithms Atmospheric measurements Cobalt Cobalt oxalate synthesis process Cobalt oxalates Computational modeling Gaussian mixture regression Gaussian process model performance assessment Model updating Numerical models Particle size Performance assessment Predictions Predictive models Sensors soft sensor Synthesis Uncertainty |
title | Soft Sensor Model Development for Cobalt Oxalate Synthesis Process Based on Adaptive Gaussian Mixture Regression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20Sensor%20Model%20Development%20for%20Cobalt%20Oxalate%20Synthesis%20Process%20Based%20on%20Adaptive%20Gaussian%20Mixture%20Regression&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Shuning&rft.date=2019&rft.volume=7&rft.spage=118749&rft.epage=118763&rft.pages=118749-118763&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2936542&rft_dat=%3Cproquest_ieee_%3E2455636749%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-cff72d087d21ac0c85b996cbfa08e8583ac58f5bf7370ba2f0b97950dbe6f1503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455636749&rft_id=info:pmid/&rft_ieee_id=8808889&rfr_iscdi=true |