Loading…
Confidentiality-Preserving Publicly Verifiable Computation Schemes for Polynomial Evaluation and Matrix-Vector Multiplication
With the development of cloud services, outsourcing computation tasks to a commercial cloud server has drawn attention of various communities, especially in the Big Data era. Public verifiability offers a flexible functionality in real circumstance where the cloud service provider (CSP) may be untru...
Saved in:
Published in: | Security and communication networks 2018-01, Vol.2018 (2018), p.1-15 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c360t-9367dacafc6aabe258d247fb8e6f7368e01fd6d8f06584d947e8d6df7f6d5fd33 |
---|---|
cites | cdi_FETCH-LOGICAL-c360t-9367dacafc6aabe258d247fb8e6f7368e01fd6d8f06584d947e8d6df7f6d5fd33 |
container_end_page | 15 |
container_issue | 2018 |
container_start_page | 1 |
container_title | Security and communication networks |
container_volume | 2018 |
creator | Hu, Jiankun Qin, Jing Zhu, Binrui Sun, Jiameng Ma, Jixin |
description | With the development of cloud services, outsourcing computation tasks to a commercial cloud server has drawn attention of various communities, especially in the Big Data era. Public verifiability offers a flexible functionality in real circumstance where the cloud service provider (CSP) may be untrusted or some malicious users may slander the CSP on purpose. However, sometimes the computational result is sensitive and is supposed to remain undisclosed in the public verification phase, while existing works on publicly verifiable computation (PVC) fail to achieve this requirement. In this paper, we highlight the property of result confidentiality in publicly verifiable computation and present confidentiality-preserving public verifiable computation (CP-PVC) schemes for multivariate polynomial evaluation and matrix-vector multiplication, respectively. The proposed schemes work efficiently under the amortized model and, compared with previous PVC schemes for these computations, achieve confidentiality of computational results, while maintaining the property of public verifiability. The proposed schemes proved to be secure, efficient, and result-confidential. In addition, we provide the algorithms and experimental simulation to show the performance of the proposed schemes, which indicates that our proposal is also acceptable in practice. |
doi_str_mv | 10.1155/2018/5275132 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455787841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2455787841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-9367dacafc6aabe258d247fb8e6f7368e01fd6d8f06584d947e8d6df7f6d5fd33</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuAgCtbqzbMEPGrs7ma_epRSP6DFgtpr2GZn7ZY0Wzebag7-d1NT9OhpZuDhHXij6ByjG4wZGxCE5YARwXBKDqIeHqbDBGFCDn93TI-jk6paIcQxFbQXfY1caayGMlhV2NAkMw8V-K0t3-JZvShsXjTxHLw1Vi0KiEduvamDCtaV8XO-hDVUsXE-nrmiKd26DYnHW1XUnVCljqcqePuZzCEPrZvWRbCbNvYHnEZHRhUVnO1nP3q9G7-MHpLJ0_3j6HaS5ClHIRmmXGiVK5NzpRZAmNSECrOQwI1IuQSEjeZaGsSZpHpIBcj2NsJwzYxO03502eVuvHuvoQrZytW-bF9mhDImpJAUt-q6U7l3VeXBZBtv18o3GUbZruBsV3C2L7jlVx1f2lKrD_ufvug0tAaM-tMEU4JE-g0jKogb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455787841</pqid></control><display><type>article</type><title>Confidentiality-Preserving Publicly Verifiable Computation Schemes for Polynomial Evaluation and Matrix-Vector Multiplication</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Hu, Jiankun ; Qin, Jing ; Zhu, Binrui ; Sun, Jiameng ; Ma, Jixin</creator><contributor>Alazab, Mamoun ; Mamoun Alazab</contributor><creatorcontrib>Hu, Jiankun ; Qin, Jing ; Zhu, Binrui ; Sun, Jiameng ; Ma, Jixin ; Alazab, Mamoun ; Mamoun Alazab</creatorcontrib><description>With the development of cloud services, outsourcing computation tasks to a commercial cloud server has drawn attention of various communities, especially in the Big Data era. Public verifiability offers a flexible functionality in real circumstance where the cloud service provider (CSP) may be untrusted or some malicious users may slander the CSP on purpose. However, sometimes the computational result is sensitive and is supposed to remain undisclosed in the public verification phase, while existing works on publicly verifiable computation (PVC) fail to achieve this requirement. In this paper, we highlight the property of result confidentiality in publicly verifiable computation and present confidentiality-preserving public verifiable computation (CP-PVC) schemes for multivariate polynomial evaluation and matrix-vector multiplication, respectively. The proposed schemes work efficiently under the amortized model and, compared with previous PVC schemes for these computations, achieve confidentiality of computational results, while maintaining the property of public verifiability. The proposed schemes proved to be secure, efficient, and result-confidential. In addition, we provide the algorithms and experimental simulation to show the performance of the proposed schemes, which indicates that our proposal is also acceptable in practice.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2018/5275132</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Big Data ; Boolean ; Cloud computing ; Confidentiality ; Efficiency ; Fourier transforms ; Mathematical analysis ; Matrix algebra ; Matrix methods ; Multiplication ; Outsourcing ; Polynomials</subject><ispartof>Security and communication networks, 2018-01, Vol.2018 (2018), p.1-15</ispartof><rights>Copyright © 2018 Jiameng Sun et al.</rights><rights>Copyright © 2018 Jiameng Sun et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-9367dacafc6aabe258d247fb8e6f7368e01fd6d8f06584d947e8d6df7f6d5fd33</citedby><cites>FETCH-LOGICAL-c360t-9367dacafc6aabe258d247fb8e6f7368e01fd6d8f06584d947e8d6df7f6d5fd33</cites><orcidid>0000-0003-2380-0396 ; 0000-0003-0230-1432 ; 0000-0003-3153-7698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2455787841?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Alazab, Mamoun</contributor><contributor>Mamoun Alazab</contributor><creatorcontrib>Hu, Jiankun</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>Zhu, Binrui</creatorcontrib><creatorcontrib>Sun, Jiameng</creatorcontrib><creatorcontrib>Ma, Jixin</creatorcontrib><title>Confidentiality-Preserving Publicly Verifiable Computation Schemes for Polynomial Evaluation and Matrix-Vector Multiplication</title><title>Security and communication networks</title><description>With the development of cloud services, outsourcing computation tasks to a commercial cloud server has drawn attention of various communities, especially in the Big Data era. Public verifiability offers a flexible functionality in real circumstance where the cloud service provider (CSP) may be untrusted or some malicious users may slander the CSP on purpose. However, sometimes the computational result is sensitive and is supposed to remain undisclosed in the public verification phase, while existing works on publicly verifiable computation (PVC) fail to achieve this requirement. In this paper, we highlight the property of result confidentiality in publicly verifiable computation and present confidentiality-preserving public verifiable computation (CP-PVC) schemes for multivariate polynomial evaluation and matrix-vector multiplication, respectively. The proposed schemes work efficiently under the amortized model and, compared with previous PVC schemes for these computations, achieve confidentiality of computational results, while maintaining the property of public verifiability. The proposed schemes proved to be secure, efficient, and result-confidential. In addition, we provide the algorithms and experimental simulation to show the performance of the proposed schemes, which indicates that our proposal is also acceptable in practice.</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Boolean</subject><subject>Cloud computing</subject><subject>Confidentiality</subject><subject>Efficiency</subject><subject>Fourier transforms</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Multiplication</subject><subject>Outsourcing</subject><subject>Polynomials</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqF0E1Lw0AQBuAgCtbqzbMEPGrs7ma_epRSP6DFgtpr2GZn7ZY0Wzebag7-d1NT9OhpZuDhHXij6ByjG4wZGxCE5YARwXBKDqIeHqbDBGFCDn93TI-jk6paIcQxFbQXfY1caayGMlhV2NAkMw8V-K0t3-JZvShsXjTxHLw1Vi0KiEduvamDCtaV8XO-hDVUsXE-nrmiKd26DYnHW1XUnVCljqcqePuZzCEPrZvWRbCbNvYHnEZHRhUVnO1nP3q9G7-MHpLJ0_3j6HaS5ClHIRmmXGiVK5NzpRZAmNSECrOQwI1IuQSEjeZaGsSZpHpIBcj2NsJwzYxO03502eVuvHuvoQrZytW-bF9mhDImpJAUt-q6U7l3VeXBZBtv18o3GUbZruBsV3C2L7jlVx1f2lKrD_ufvug0tAaM-tMEU4JE-g0jKogb</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Hu, Jiankun</creator><creator>Qin, Jing</creator><creator>Zhu, Binrui</creator><creator>Sun, Jiameng</creator><creator>Ma, Jixin</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2380-0396</orcidid><orcidid>https://orcid.org/0000-0003-0230-1432</orcidid><orcidid>https://orcid.org/0000-0003-3153-7698</orcidid></search><sort><creationdate>20180101</creationdate><title>Confidentiality-Preserving Publicly Verifiable Computation Schemes for Polynomial Evaluation and Matrix-Vector Multiplication</title><author>Hu, Jiankun ; Qin, Jing ; Zhu, Binrui ; Sun, Jiameng ; Ma, Jixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-9367dacafc6aabe258d247fb8e6f7368e01fd6d8f06584d947e8d6df7f6d5fd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Boolean</topic><topic>Cloud computing</topic><topic>Confidentiality</topic><topic>Efficiency</topic><topic>Fourier transforms</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Multiplication</topic><topic>Outsourcing</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Jiankun</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>Zhu, Binrui</creatorcontrib><creatorcontrib>Sun, Jiameng</creatorcontrib><creatorcontrib>Ma, Jixin</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Jiankun</au><au>Qin, Jing</au><au>Zhu, Binrui</au><au>Sun, Jiameng</au><au>Ma, Jixin</au><au>Alazab, Mamoun</au><au>Mamoun Alazab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confidentiality-Preserving Publicly Verifiable Computation Schemes for Polynomial Evaluation and Matrix-Vector Multiplication</atitle><jtitle>Security and communication networks</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>With the development of cloud services, outsourcing computation tasks to a commercial cloud server has drawn attention of various communities, especially in the Big Data era. Public verifiability offers a flexible functionality in real circumstance where the cloud service provider (CSP) may be untrusted or some malicious users may slander the CSP on purpose. However, sometimes the computational result is sensitive and is supposed to remain undisclosed in the public verification phase, while existing works on publicly verifiable computation (PVC) fail to achieve this requirement. In this paper, we highlight the property of result confidentiality in publicly verifiable computation and present confidentiality-preserving public verifiable computation (CP-PVC) schemes for multivariate polynomial evaluation and matrix-vector multiplication, respectively. The proposed schemes work efficiently under the amortized model and, compared with previous PVC schemes for these computations, achieve confidentiality of computational results, while maintaining the property of public verifiability. The proposed schemes proved to be secure, efficient, and result-confidential. In addition, we provide the algorithms and experimental simulation to show the performance of the proposed schemes, which indicates that our proposal is also acceptable in practice.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/5275132</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2380-0396</orcidid><orcidid>https://orcid.org/0000-0003-0230-1432</orcidid><orcidid>https://orcid.org/0000-0003-3153-7698</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-0114 |
ispartof | Security and communication networks, 2018-01, Vol.2018 (2018), p.1-15 |
issn | 1939-0114 1939-0122 |
language | eng |
recordid | cdi_proquest_journals_2455787841 |
source | Wiley Online Library Open Access; Publicly Available Content (ProQuest) |
subjects | Algorithms Big Data Boolean Cloud computing Confidentiality Efficiency Fourier transforms Mathematical analysis Matrix algebra Matrix methods Multiplication Outsourcing Polynomials |
title | Confidentiality-Preserving Publicly Verifiable Computation Schemes for Polynomial Evaluation and Matrix-Vector Multiplication |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confidentiality-Preserving%20Publicly%20Verifiable%20Computation%20Schemes%20for%20Polynomial%20Evaluation%20and%20Matrix-Vector%20Multiplication&rft.jtitle=Security%20and%20communication%20networks&rft.au=Hu,%20Jiankun&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2018/5275132&rft_dat=%3Cproquest_cross%3E2455787841%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-9367dacafc6aabe258d247fb8e6f7368e01fd6d8f06584d947e8d6df7f6d5fd33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455787841&rft_id=info:pmid/&rfr_iscdi=true |