Loading…

Confidentiality-Preserving Publicly Verifiable Computation Schemes for Polynomial Evaluation and Matrix-Vector Multiplication

With the development of cloud services, outsourcing computation tasks to a commercial cloud server has drawn attention of various communities, especially in the Big Data era. Public verifiability offers a flexible functionality in real circumstance where the cloud service provider (CSP) may be untru...

Full description

Saved in:
Bibliographic Details
Published in:Security and communication networks 2018-01, Vol.2018 (2018), p.1-15
Main Authors: Hu, Jiankun, Qin, Jing, Zhu, Binrui, Sun, Jiameng, Ma, Jixin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c360t-9367dacafc6aabe258d247fb8e6f7368e01fd6d8f06584d947e8d6df7f6d5fd33
cites cdi_FETCH-LOGICAL-c360t-9367dacafc6aabe258d247fb8e6f7368e01fd6d8f06584d947e8d6df7f6d5fd33
container_end_page 15
container_issue 2018
container_start_page 1
container_title Security and communication networks
container_volume 2018
creator Hu, Jiankun
Qin, Jing
Zhu, Binrui
Sun, Jiameng
Ma, Jixin
description With the development of cloud services, outsourcing computation tasks to a commercial cloud server has drawn attention of various communities, especially in the Big Data era. Public verifiability offers a flexible functionality in real circumstance where the cloud service provider (CSP) may be untrusted or some malicious users may slander the CSP on purpose. However, sometimes the computational result is sensitive and is supposed to remain undisclosed in the public verification phase, while existing works on publicly verifiable computation (PVC) fail to achieve this requirement. In this paper, we highlight the property of result confidentiality in publicly verifiable computation and present confidentiality-preserving public verifiable computation (CP-PVC) schemes for multivariate polynomial evaluation and matrix-vector multiplication, respectively. The proposed schemes work efficiently under the amortized model and, compared with previous PVC schemes for these computations, achieve confidentiality of computational results, while maintaining the property of public verifiability. The proposed schemes proved to be secure, efficient, and result-confidential. In addition, we provide the algorithms and experimental simulation to show the performance of the proposed schemes, which indicates that our proposal is also acceptable in practice.
doi_str_mv 10.1155/2018/5275132
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455787841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2455787841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-9367dacafc6aabe258d247fb8e6f7368e01fd6d8f06584d947e8d6df7f6d5fd33</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuAgCtbqzbMEPGrs7ma_epRSP6DFgtpr2GZn7ZY0Wzebag7-d1NT9OhpZuDhHXij6ByjG4wZGxCE5YARwXBKDqIeHqbDBGFCDn93TI-jk6paIcQxFbQXfY1caayGMlhV2NAkMw8V-K0t3-JZvShsXjTxHLw1Vi0KiEduvamDCtaV8XO-hDVUsXE-nrmiKd26DYnHW1XUnVCljqcqePuZzCEPrZvWRbCbNvYHnEZHRhUVnO1nP3q9G7-MHpLJ0_3j6HaS5ClHIRmmXGiVK5NzpRZAmNSECrOQwI1IuQSEjeZaGsSZpHpIBcj2NsJwzYxO03502eVuvHuvoQrZytW-bF9mhDImpJAUt-q6U7l3VeXBZBtv18o3GUbZruBsV3C2L7jlVx1f2lKrD_ufvug0tAaM-tMEU4JE-g0jKogb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455787841</pqid></control><display><type>article</type><title>Confidentiality-Preserving Publicly Verifiable Computation Schemes for Polynomial Evaluation and Matrix-Vector Multiplication</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Hu, Jiankun ; Qin, Jing ; Zhu, Binrui ; Sun, Jiameng ; Ma, Jixin</creator><contributor>Alazab, Mamoun ; Mamoun Alazab</contributor><creatorcontrib>Hu, Jiankun ; Qin, Jing ; Zhu, Binrui ; Sun, Jiameng ; Ma, Jixin ; Alazab, Mamoun ; Mamoun Alazab</creatorcontrib><description>With the development of cloud services, outsourcing computation tasks to a commercial cloud server has drawn attention of various communities, especially in the Big Data era. Public verifiability offers a flexible functionality in real circumstance where the cloud service provider (CSP) may be untrusted or some malicious users may slander the CSP on purpose. However, sometimes the computational result is sensitive and is supposed to remain undisclosed in the public verification phase, while existing works on publicly verifiable computation (PVC) fail to achieve this requirement. In this paper, we highlight the property of result confidentiality in publicly verifiable computation and present confidentiality-preserving public verifiable computation (CP-PVC) schemes for multivariate polynomial evaluation and matrix-vector multiplication, respectively. The proposed schemes work efficiently under the amortized model and, compared with previous PVC schemes for these computations, achieve confidentiality of computational results, while maintaining the property of public verifiability. The proposed schemes proved to be secure, efficient, and result-confidential. In addition, we provide the algorithms and experimental simulation to show the performance of the proposed schemes, which indicates that our proposal is also acceptable in practice.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2018/5275132</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Big Data ; Boolean ; Cloud computing ; Confidentiality ; Efficiency ; Fourier transforms ; Mathematical analysis ; Matrix algebra ; Matrix methods ; Multiplication ; Outsourcing ; Polynomials</subject><ispartof>Security and communication networks, 2018-01, Vol.2018 (2018), p.1-15</ispartof><rights>Copyright © 2018 Jiameng Sun et al.</rights><rights>Copyright © 2018 Jiameng Sun et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-9367dacafc6aabe258d247fb8e6f7368e01fd6d8f06584d947e8d6df7f6d5fd33</citedby><cites>FETCH-LOGICAL-c360t-9367dacafc6aabe258d247fb8e6f7368e01fd6d8f06584d947e8d6df7f6d5fd33</cites><orcidid>0000-0003-2380-0396 ; 0000-0003-0230-1432 ; 0000-0003-3153-7698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2455787841?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Alazab, Mamoun</contributor><contributor>Mamoun Alazab</contributor><creatorcontrib>Hu, Jiankun</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>Zhu, Binrui</creatorcontrib><creatorcontrib>Sun, Jiameng</creatorcontrib><creatorcontrib>Ma, Jixin</creatorcontrib><title>Confidentiality-Preserving Publicly Verifiable Computation Schemes for Polynomial Evaluation and Matrix-Vector Multiplication</title><title>Security and communication networks</title><description>With the development of cloud services, outsourcing computation tasks to a commercial cloud server has drawn attention of various communities, especially in the Big Data era. Public verifiability offers a flexible functionality in real circumstance where the cloud service provider (CSP) may be untrusted or some malicious users may slander the CSP on purpose. However, sometimes the computational result is sensitive and is supposed to remain undisclosed in the public verification phase, while existing works on publicly verifiable computation (PVC) fail to achieve this requirement. In this paper, we highlight the property of result confidentiality in publicly verifiable computation and present confidentiality-preserving public verifiable computation (CP-PVC) schemes for multivariate polynomial evaluation and matrix-vector multiplication, respectively. The proposed schemes work efficiently under the amortized model and, compared with previous PVC schemes for these computations, achieve confidentiality of computational results, while maintaining the property of public verifiability. The proposed schemes proved to be secure, efficient, and result-confidential. In addition, we provide the algorithms and experimental simulation to show the performance of the proposed schemes, which indicates that our proposal is also acceptable in practice.</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Boolean</subject><subject>Cloud computing</subject><subject>Confidentiality</subject><subject>Efficiency</subject><subject>Fourier transforms</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Multiplication</subject><subject>Outsourcing</subject><subject>Polynomials</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqF0E1Lw0AQBuAgCtbqzbMEPGrs7ma_epRSP6DFgtpr2GZn7ZY0Wzebag7-d1NT9OhpZuDhHXij6ByjG4wZGxCE5YARwXBKDqIeHqbDBGFCDn93TI-jk6paIcQxFbQXfY1caayGMlhV2NAkMw8V-K0t3-JZvShsXjTxHLw1Vi0KiEduvamDCtaV8XO-hDVUsXE-nrmiKd26DYnHW1XUnVCljqcqePuZzCEPrZvWRbCbNvYHnEZHRhUVnO1nP3q9G7-MHpLJ0_3j6HaS5ClHIRmmXGiVK5NzpRZAmNSECrOQwI1IuQSEjeZaGsSZpHpIBcj2NsJwzYxO03502eVuvHuvoQrZytW-bF9mhDImpJAUt-q6U7l3VeXBZBtv18o3GUbZruBsV3C2L7jlVx1f2lKrD_ufvug0tAaM-tMEU4JE-g0jKogb</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Hu, Jiankun</creator><creator>Qin, Jing</creator><creator>Zhu, Binrui</creator><creator>Sun, Jiameng</creator><creator>Ma, Jixin</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2380-0396</orcidid><orcidid>https://orcid.org/0000-0003-0230-1432</orcidid><orcidid>https://orcid.org/0000-0003-3153-7698</orcidid></search><sort><creationdate>20180101</creationdate><title>Confidentiality-Preserving Publicly Verifiable Computation Schemes for Polynomial Evaluation and Matrix-Vector Multiplication</title><author>Hu, Jiankun ; Qin, Jing ; Zhu, Binrui ; Sun, Jiameng ; Ma, Jixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-9367dacafc6aabe258d247fb8e6f7368e01fd6d8f06584d947e8d6df7f6d5fd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Boolean</topic><topic>Cloud computing</topic><topic>Confidentiality</topic><topic>Efficiency</topic><topic>Fourier transforms</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Multiplication</topic><topic>Outsourcing</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Jiankun</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>Zhu, Binrui</creatorcontrib><creatorcontrib>Sun, Jiameng</creatorcontrib><creatorcontrib>Ma, Jixin</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Jiankun</au><au>Qin, Jing</au><au>Zhu, Binrui</au><au>Sun, Jiameng</au><au>Ma, Jixin</au><au>Alazab, Mamoun</au><au>Mamoun Alazab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confidentiality-Preserving Publicly Verifiable Computation Schemes for Polynomial Evaluation and Matrix-Vector Multiplication</atitle><jtitle>Security and communication networks</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>With the development of cloud services, outsourcing computation tasks to a commercial cloud server has drawn attention of various communities, especially in the Big Data era. Public verifiability offers a flexible functionality in real circumstance where the cloud service provider (CSP) may be untrusted or some malicious users may slander the CSP on purpose. However, sometimes the computational result is sensitive and is supposed to remain undisclosed in the public verification phase, while existing works on publicly verifiable computation (PVC) fail to achieve this requirement. In this paper, we highlight the property of result confidentiality in publicly verifiable computation and present confidentiality-preserving public verifiable computation (CP-PVC) schemes for multivariate polynomial evaluation and matrix-vector multiplication, respectively. The proposed schemes work efficiently under the amortized model and, compared with previous PVC schemes for these computations, achieve confidentiality of computational results, while maintaining the property of public verifiability. The proposed schemes proved to be secure, efficient, and result-confidential. In addition, we provide the algorithms and experimental simulation to show the performance of the proposed schemes, which indicates that our proposal is also acceptable in practice.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/5275132</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2380-0396</orcidid><orcidid>https://orcid.org/0000-0003-0230-1432</orcidid><orcidid>https://orcid.org/0000-0003-3153-7698</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-0114
ispartof Security and communication networks, 2018-01, Vol.2018 (2018), p.1-15
issn 1939-0114
1939-0122
language eng
recordid cdi_proquest_journals_2455787841
source Wiley Online Library Open Access; Publicly Available Content (ProQuest)
subjects Algorithms
Big Data
Boolean
Cloud computing
Confidentiality
Efficiency
Fourier transforms
Mathematical analysis
Matrix algebra
Matrix methods
Multiplication
Outsourcing
Polynomials
title Confidentiality-Preserving Publicly Verifiable Computation Schemes for Polynomial Evaluation and Matrix-Vector Multiplication
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confidentiality-Preserving%20Publicly%20Verifiable%20Computation%20Schemes%20for%20Polynomial%20Evaluation%20and%20Matrix-Vector%20Multiplication&rft.jtitle=Security%20and%20communication%20networks&rft.au=Hu,%20Jiankun&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2018/5275132&rft_dat=%3Cproquest_cross%3E2455787841%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-9367dacafc6aabe258d247fb8e6f7368e01fd6d8f06584d947e8d6df7f6d5fd33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455787841&rft_id=info:pmid/&rfr_iscdi=true