Loading…

A Bayesian Learning Method for Financial Time-Series Analysis

This article develops a sequential Bayesian learning method to estimate the parameters and recover the state variables for generalized autoregressive conditional heteroscedasticity (GARCH) models, which are commonly used in the financial time-series analysis. This simulation-based method combines pa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2018-01, Vol.6, p.38959-38966
Main Authors: Zhu, Fumin, Quan, Wei, Zheng, Zunxin, Wan, Shaohua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article develops a sequential Bayesian learning method to estimate the parameters and recover the state variables for generalized autoregressive conditional heteroscedasticity (GARCH) models, which are commonly used in the financial time-series analysis. This simulation-based method combines particle-filtering technology with a Markov chain Monte Carlo algorithm when the model is non-linear and the number of observed variables is relatively sparse. We compare the performance of the sequential Bayesian learning approach with the numerical maximum likelihood estimation (NMLE) in estimating models based on S&P 500 return rates. Our research concludes that the sequential parameter learning approach performs more robustly and accurately than the NMLE, by taking into account the uncertainty of the model. We also carry out simulation studies to confirm that the sequential Bayesian learning method is extremely reliable for GARCH models.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2018.2853998