Loading…
A Bayesian Learning Method for Financial Time-Series Analysis
This article develops a sequential Bayesian learning method to estimate the parameters and recover the state variables for generalized autoregressive conditional heteroscedasticity (GARCH) models, which are commonly used in the financial time-series analysis. This simulation-based method combines pa...
Saved in:
Published in: | IEEE access 2018-01, Vol.6, p.38959-38966 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-a3a21e323a3f4f5638c70e4e18b37dbdf3b6a75cd27680425d7c95232ae3fdfc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-a3a21e323a3f4f5638c70e4e18b37dbdf3b6a75cd27680425d7c95232ae3fdfc3 |
container_end_page | 38966 |
container_issue | |
container_start_page | 38959 |
container_title | IEEE access |
container_volume | 6 |
creator | Zhu, Fumin Quan, Wei Zheng, Zunxin Wan, Shaohua |
description | This article develops a sequential Bayesian learning method to estimate the parameters and recover the state variables for generalized autoregressive conditional heteroscedasticity (GARCH) models, which are commonly used in the financial time-series analysis. This simulation-based method combines particle-filtering technology with a Markov chain Monte Carlo algorithm when the model is non-linear and the number of observed variables is relatively sparse. We compare the performance of the sequential Bayesian learning approach with the numerical maximum likelihood estimation (NMLE) in estimating models based on S&P 500 return rates. Our research concludes that the sequential parameter learning approach performs more robustly and accurately than the NMLE, by taking into account the uncertainty of the model. We also carry out simulation studies to confirm that the sequential Bayesian learning method is extremely reliable for GARCH models. |
doi_str_mv | 10.1109/ACCESS.2018.2853998 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455929335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8408721</ieee_id><doaj_id>oai_doaj_org_article_92c2aa66558a485ba916b3c3264f8eaa</doaj_id><sourcerecordid>2455929335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a3a21e323a3f4f5638c70e4e18b37dbdf3b6a75cd27680425d7c95232ae3fdfc3</originalsourceid><addsrcrecordid>eNpNkE9PwzAMxSMEEtPgE-xSiXNHEzdpcuAwJv5MGuIwOEdu6kCmrR3Jdti3p6MI4YutJ79n-cfYhBdTzgtzO5vPH1arqSi4ngotwRh9xkaCK5ODBHX-b75k1ymti750L8lqxO5m2T0eKQVssyVhbEP7kb3Q_rNrMt_F7DG02LqAm-wtbClfUQyUslmLm2MK6YpdeNwkuv7tY_b--PA2f86Xr0-L-WyZu7LQ-xwBBScQgOBLLxVoVxVUEtc1VE3deKgVVtI1olK6KIVsKmekAIEEvvEOxmwx5DYdru0uhi3Go-0w2B-hix8W4z64DVkjnEBUSkqNpZY1Gq5qcCBU6TUh9lk3Q9Yudl8HSnu77g6xfyhZUUpphIEe1ZjBsOVil1Ik_3eVF_aE3Q7Y7Qm7_cXeuyaDKxDRn0P3ECrB4RtglHx7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455929335</pqid></control><display><type>article</type><title>A Bayesian Learning Method for Financial Time-Series Analysis</title><source>IEEE Xplore Open Access Journals</source><creator>Zhu, Fumin ; Quan, Wei ; Zheng, Zunxin ; Wan, Shaohua</creator><creatorcontrib>Zhu, Fumin ; Quan, Wei ; Zheng, Zunxin ; Wan, Shaohua</creatorcontrib><description>This article develops a sequential Bayesian learning method to estimate the parameters and recover the state variables for generalized autoregressive conditional heteroscedasticity (GARCH) models, which are commonly used in the financial time-series analysis. This simulation-based method combines particle-filtering technology with a Markov chain Monte Carlo algorithm when the model is non-linear and the number of observed variables is relatively sparse. We compare the performance of the sequential Bayesian learning approach with the numerical maximum likelihood estimation (NMLE) in estimating models based on S&P 500 return rates. Our research concludes that the sequential parameter learning approach performs more robustly and accurately than the NMLE, by taking into account the uncertainty of the model. We also carry out simulation studies to confirm that the sequential Bayesian learning method is extremely reliable for GARCH models.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2853998</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Analytical models ; Autoregressive models ; Autoregressive processes ; Bayes methods ; Bayesian analysis ; Biological system modeling ; Computational modeling ; Computer simulation ; GARCH models ; Machine learning ; Markov chain Monte Carlo ; Markov chains ; Maximum likelihood estimation ; Numerical models ; Parameter estimation ; particle filtering ; Sequential Bayesian learning ; sparse recovery ; State variable ; Stochastic models ; Time series</subject><ispartof>IEEE access, 2018-01, Vol.6, p.38959-38966</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a3a21e323a3f4f5638c70e4e18b37dbdf3b6a75cd27680425d7c95232ae3fdfc3</citedby><cites>FETCH-LOGICAL-c408t-a3a21e323a3f4f5638c70e4e18b37dbdf3b6a75cd27680425d7c95232ae3fdfc3</cites><orcidid>0000-0002-8181-0958 ; 0000-0001-6718-7672 ; 0000-0001-7013-9081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8408721$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zhu, Fumin</creatorcontrib><creatorcontrib>Quan, Wei</creatorcontrib><creatorcontrib>Zheng, Zunxin</creatorcontrib><creatorcontrib>Wan, Shaohua</creatorcontrib><title>A Bayesian Learning Method for Financial Time-Series Analysis</title><title>IEEE access</title><addtitle>Access</addtitle><description>This article develops a sequential Bayesian learning method to estimate the parameters and recover the state variables for generalized autoregressive conditional heteroscedasticity (GARCH) models, which are commonly used in the financial time-series analysis. This simulation-based method combines particle-filtering technology with a Markov chain Monte Carlo algorithm when the model is non-linear and the number of observed variables is relatively sparse. We compare the performance of the sequential Bayesian learning approach with the numerical maximum likelihood estimation (NMLE) in estimating models based on S&P 500 return rates. Our research concludes that the sequential parameter learning approach performs more robustly and accurately than the NMLE, by taking into account the uncertainty of the model. We also carry out simulation studies to confirm that the sequential Bayesian learning method is extremely reliable for GARCH models.</description><subject>Algorithms</subject><subject>Analytical models</subject><subject>Autoregressive models</subject><subject>Autoregressive processes</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Biological system modeling</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>GARCH models</subject><subject>Machine learning</subject><subject>Markov chain Monte Carlo</subject><subject>Markov chains</subject><subject>Maximum likelihood estimation</subject><subject>Numerical models</subject><subject>Parameter estimation</subject><subject>particle filtering</subject><subject>Sequential Bayesian learning</subject><subject>sparse recovery</subject><subject>State variable</subject><subject>Stochastic models</subject><subject>Time series</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9PwzAMxSMEEtPgE-xSiXNHEzdpcuAwJv5MGuIwOEdu6kCmrR3Jdti3p6MI4YutJ79n-cfYhBdTzgtzO5vPH1arqSi4ngotwRh9xkaCK5ODBHX-b75k1ymti750L8lqxO5m2T0eKQVssyVhbEP7kb3Q_rNrMt_F7DG02LqAm-wtbClfUQyUslmLm2MK6YpdeNwkuv7tY_b--PA2f86Xr0-L-WyZu7LQ-xwBBScQgOBLLxVoVxVUEtc1VE3deKgVVtI1olK6KIVsKmekAIEEvvEOxmwx5DYdru0uhi3Go-0w2B-hix8W4z64DVkjnEBUSkqNpZY1Gq5qcCBU6TUh9lk3Q9Yudl8HSnu77g6xfyhZUUpphIEe1ZjBsOVil1Ik_3eVF_aE3Q7Y7Qm7_cXeuyaDKxDRn0P3ECrB4RtglHx7</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Zhu, Fumin</creator><creator>Quan, Wei</creator><creator>Zheng, Zunxin</creator><creator>Wan, Shaohua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8181-0958</orcidid><orcidid>https://orcid.org/0000-0001-6718-7672</orcidid><orcidid>https://orcid.org/0000-0001-7013-9081</orcidid></search><sort><creationdate>20180101</creationdate><title>A Bayesian Learning Method for Financial Time-Series Analysis</title><author>Zhu, Fumin ; Quan, Wei ; Zheng, Zunxin ; Wan, Shaohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a3a21e323a3f4f5638c70e4e18b37dbdf3b6a75cd27680425d7c95232ae3fdfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Analytical models</topic><topic>Autoregressive models</topic><topic>Autoregressive processes</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Biological system modeling</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>GARCH models</topic><topic>Machine learning</topic><topic>Markov chain Monte Carlo</topic><topic>Markov chains</topic><topic>Maximum likelihood estimation</topic><topic>Numerical models</topic><topic>Parameter estimation</topic><topic>particle filtering</topic><topic>Sequential Bayesian learning</topic><topic>sparse recovery</topic><topic>State variable</topic><topic>Stochastic models</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Fumin</creatorcontrib><creatorcontrib>Quan, Wei</creatorcontrib><creatorcontrib>Zheng, Zunxin</creatorcontrib><creatorcontrib>Wan, Shaohua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Fumin</au><au>Quan, Wei</au><au>Zheng, Zunxin</au><au>Wan, Shaohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian Learning Method for Financial Time-Series Analysis</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>38959</spage><epage>38966</epage><pages>38959-38966</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This article develops a sequential Bayesian learning method to estimate the parameters and recover the state variables for generalized autoregressive conditional heteroscedasticity (GARCH) models, which are commonly used in the financial time-series analysis. This simulation-based method combines particle-filtering technology with a Markov chain Monte Carlo algorithm when the model is non-linear and the number of observed variables is relatively sparse. We compare the performance of the sequential Bayesian learning approach with the numerical maximum likelihood estimation (NMLE) in estimating models based on S&P 500 return rates. Our research concludes that the sequential parameter learning approach performs more robustly and accurately than the NMLE, by taking into account the uncertainty of the model. We also carry out simulation studies to confirm that the sequential Bayesian learning method is extremely reliable for GARCH models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2853998</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8181-0958</orcidid><orcidid>https://orcid.org/0000-0001-6718-7672</orcidid><orcidid>https://orcid.org/0000-0001-7013-9081</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2018-01, Vol.6, p.38959-38966 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455929335 |
source | IEEE Xplore Open Access Journals |
subjects | Algorithms Analytical models Autoregressive models Autoregressive processes Bayes methods Bayesian analysis Biological system modeling Computational modeling Computer simulation GARCH models Machine learning Markov chain Monte Carlo Markov chains Maximum likelihood estimation Numerical models Parameter estimation particle filtering Sequential Bayesian learning sparse recovery State variable Stochastic models Time series |
title | A Bayesian Learning Method for Financial Time-Series Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20Learning%20Method%20for%20Financial%20Time-Series%20Analysis&rft.jtitle=IEEE%20access&rft.au=Zhu,%20Fumin&rft.date=2018-01-01&rft.volume=6&rft.spage=38959&rft.epage=38966&rft.pages=38959-38966&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2853998&rft_dat=%3Cproquest_doaj_%3E2455929335%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-a3a21e323a3f4f5638c70e4e18b37dbdf3b6a75cd27680425d7c95232ae3fdfc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455929335&rft_id=info:pmid/&rft_ieee_id=8408721&rfr_iscdi=true |