Loading…

A Bayesian Learning Method for Financial Time-Series Analysis

This article develops a sequential Bayesian learning method to estimate the parameters and recover the state variables for generalized autoregressive conditional heteroscedasticity (GARCH) models, which are commonly used in the financial time-series analysis. This simulation-based method combines pa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2018-01, Vol.6, p.38959-38966
Main Authors: Zhu, Fumin, Quan, Wei, Zheng, Zunxin, Wan, Shaohua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-a3a21e323a3f4f5638c70e4e18b37dbdf3b6a75cd27680425d7c95232ae3fdfc3
cites cdi_FETCH-LOGICAL-c408t-a3a21e323a3f4f5638c70e4e18b37dbdf3b6a75cd27680425d7c95232ae3fdfc3
container_end_page 38966
container_issue
container_start_page 38959
container_title IEEE access
container_volume 6
creator Zhu, Fumin
Quan, Wei
Zheng, Zunxin
Wan, Shaohua
description This article develops a sequential Bayesian learning method to estimate the parameters and recover the state variables for generalized autoregressive conditional heteroscedasticity (GARCH) models, which are commonly used in the financial time-series analysis. This simulation-based method combines particle-filtering technology with a Markov chain Monte Carlo algorithm when the model is non-linear and the number of observed variables is relatively sparse. We compare the performance of the sequential Bayesian learning approach with the numerical maximum likelihood estimation (NMLE) in estimating models based on S&P 500 return rates. Our research concludes that the sequential parameter learning approach performs more robustly and accurately than the NMLE, by taking into account the uncertainty of the model. We also carry out simulation studies to confirm that the sequential Bayesian learning method is extremely reliable for GARCH models.
doi_str_mv 10.1109/ACCESS.2018.2853998
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455929335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8408721</ieee_id><doaj_id>oai_doaj_org_article_92c2aa66558a485ba916b3c3264f8eaa</doaj_id><sourcerecordid>2455929335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a3a21e323a3f4f5638c70e4e18b37dbdf3b6a75cd27680425d7c95232ae3fdfc3</originalsourceid><addsrcrecordid>eNpNkE9PwzAMxSMEEtPgE-xSiXNHEzdpcuAwJv5MGuIwOEdu6kCmrR3Jdti3p6MI4YutJ79n-cfYhBdTzgtzO5vPH1arqSi4ngotwRh9xkaCK5ODBHX-b75k1ymti750L8lqxO5m2T0eKQVssyVhbEP7kb3Q_rNrMt_F7DG02LqAm-wtbClfUQyUslmLm2MK6YpdeNwkuv7tY_b--PA2f86Xr0-L-WyZu7LQ-xwBBScQgOBLLxVoVxVUEtc1VE3deKgVVtI1olK6KIVsKmekAIEEvvEOxmwx5DYdru0uhi3Go-0w2B-hix8W4z64DVkjnEBUSkqNpZY1Gq5qcCBU6TUh9lk3Q9Yudl8HSnu77g6xfyhZUUpphIEe1ZjBsOVil1Ik_3eVF_aE3Q7Y7Qm7_cXeuyaDKxDRn0P3ECrB4RtglHx7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455929335</pqid></control><display><type>article</type><title>A Bayesian Learning Method for Financial Time-Series Analysis</title><source>IEEE Xplore Open Access Journals</source><creator>Zhu, Fumin ; Quan, Wei ; Zheng, Zunxin ; Wan, Shaohua</creator><creatorcontrib>Zhu, Fumin ; Quan, Wei ; Zheng, Zunxin ; Wan, Shaohua</creatorcontrib><description>This article develops a sequential Bayesian learning method to estimate the parameters and recover the state variables for generalized autoregressive conditional heteroscedasticity (GARCH) models, which are commonly used in the financial time-series analysis. This simulation-based method combines particle-filtering technology with a Markov chain Monte Carlo algorithm when the model is non-linear and the number of observed variables is relatively sparse. We compare the performance of the sequential Bayesian learning approach with the numerical maximum likelihood estimation (NMLE) in estimating models based on S&amp;P 500 return rates. Our research concludes that the sequential parameter learning approach performs more robustly and accurately than the NMLE, by taking into account the uncertainty of the model. We also carry out simulation studies to confirm that the sequential Bayesian learning method is extremely reliable for GARCH models.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2853998</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Analytical models ; Autoregressive models ; Autoregressive processes ; Bayes methods ; Bayesian analysis ; Biological system modeling ; Computational modeling ; Computer simulation ; GARCH models ; Machine learning ; Markov chain Monte Carlo ; Markov chains ; Maximum likelihood estimation ; Numerical models ; Parameter estimation ; particle filtering ; Sequential Bayesian learning ; sparse recovery ; State variable ; Stochastic models ; Time series</subject><ispartof>IEEE access, 2018-01, Vol.6, p.38959-38966</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a3a21e323a3f4f5638c70e4e18b37dbdf3b6a75cd27680425d7c95232ae3fdfc3</citedby><cites>FETCH-LOGICAL-c408t-a3a21e323a3f4f5638c70e4e18b37dbdf3b6a75cd27680425d7c95232ae3fdfc3</cites><orcidid>0000-0002-8181-0958 ; 0000-0001-6718-7672 ; 0000-0001-7013-9081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8408721$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zhu, Fumin</creatorcontrib><creatorcontrib>Quan, Wei</creatorcontrib><creatorcontrib>Zheng, Zunxin</creatorcontrib><creatorcontrib>Wan, Shaohua</creatorcontrib><title>A Bayesian Learning Method for Financial Time-Series Analysis</title><title>IEEE access</title><addtitle>Access</addtitle><description>This article develops a sequential Bayesian learning method to estimate the parameters and recover the state variables for generalized autoregressive conditional heteroscedasticity (GARCH) models, which are commonly used in the financial time-series analysis. This simulation-based method combines particle-filtering technology with a Markov chain Monte Carlo algorithm when the model is non-linear and the number of observed variables is relatively sparse. We compare the performance of the sequential Bayesian learning approach with the numerical maximum likelihood estimation (NMLE) in estimating models based on S&amp;P 500 return rates. Our research concludes that the sequential parameter learning approach performs more robustly and accurately than the NMLE, by taking into account the uncertainty of the model. We also carry out simulation studies to confirm that the sequential Bayesian learning method is extremely reliable for GARCH models.</description><subject>Algorithms</subject><subject>Analytical models</subject><subject>Autoregressive models</subject><subject>Autoregressive processes</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Biological system modeling</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>GARCH models</subject><subject>Machine learning</subject><subject>Markov chain Monte Carlo</subject><subject>Markov chains</subject><subject>Maximum likelihood estimation</subject><subject>Numerical models</subject><subject>Parameter estimation</subject><subject>particle filtering</subject><subject>Sequential Bayesian learning</subject><subject>sparse recovery</subject><subject>State variable</subject><subject>Stochastic models</subject><subject>Time series</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9PwzAMxSMEEtPgE-xSiXNHEzdpcuAwJv5MGuIwOEdu6kCmrR3Jdti3p6MI4YutJ79n-cfYhBdTzgtzO5vPH1arqSi4ngotwRh9xkaCK5ODBHX-b75k1ymti750L8lqxO5m2T0eKQVssyVhbEP7kb3Q_rNrMt_F7DG02LqAm-wtbClfUQyUslmLm2MK6YpdeNwkuv7tY_b--PA2f86Xr0-L-WyZu7LQ-xwBBScQgOBLLxVoVxVUEtc1VE3deKgVVtI1olK6KIVsKmekAIEEvvEOxmwx5DYdru0uhi3Go-0w2B-hix8W4z64DVkjnEBUSkqNpZY1Gq5qcCBU6TUh9lk3Q9Yudl8HSnu77g6xfyhZUUpphIEe1ZjBsOVil1Ik_3eVF_aE3Q7Y7Qm7_cXeuyaDKxDRn0P3ECrB4RtglHx7</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Zhu, Fumin</creator><creator>Quan, Wei</creator><creator>Zheng, Zunxin</creator><creator>Wan, Shaohua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8181-0958</orcidid><orcidid>https://orcid.org/0000-0001-6718-7672</orcidid><orcidid>https://orcid.org/0000-0001-7013-9081</orcidid></search><sort><creationdate>20180101</creationdate><title>A Bayesian Learning Method for Financial Time-Series Analysis</title><author>Zhu, Fumin ; Quan, Wei ; Zheng, Zunxin ; Wan, Shaohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a3a21e323a3f4f5638c70e4e18b37dbdf3b6a75cd27680425d7c95232ae3fdfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Analytical models</topic><topic>Autoregressive models</topic><topic>Autoregressive processes</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Biological system modeling</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>GARCH models</topic><topic>Machine learning</topic><topic>Markov chain Monte Carlo</topic><topic>Markov chains</topic><topic>Maximum likelihood estimation</topic><topic>Numerical models</topic><topic>Parameter estimation</topic><topic>particle filtering</topic><topic>Sequential Bayesian learning</topic><topic>sparse recovery</topic><topic>State variable</topic><topic>Stochastic models</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Fumin</creatorcontrib><creatorcontrib>Quan, Wei</creatorcontrib><creatorcontrib>Zheng, Zunxin</creatorcontrib><creatorcontrib>Wan, Shaohua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Fumin</au><au>Quan, Wei</au><au>Zheng, Zunxin</au><au>Wan, Shaohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian Learning Method for Financial Time-Series Analysis</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>38959</spage><epage>38966</epage><pages>38959-38966</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This article develops a sequential Bayesian learning method to estimate the parameters and recover the state variables for generalized autoregressive conditional heteroscedasticity (GARCH) models, which are commonly used in the financial time-series analysis. This simulation-based method combines particle-filtering technology with a Markov chain Monte Carlo algorithm when the model is non-linear and the number of observed variables is relatively sparse. We compare the performance of the sequential Bayesian learning approach with the numerical maximum likelihood estimation (NMLE) in estimating models based on S&amp;P 500 return rates. Our research concludes that the sequential parameter learning approach performs more robustly and accurately than the NMLE, by taking into account the uncertainty of the model. We also carry out simulation studies to confirm that the sequential Bayesian learning method is extremely reliable for GARCH models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2853998</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8181-0958</orcidid><orcidid>https://orcid.org/0000-0001-6718-7672</orcidid><orcidid>https://orcid.org/0000-0001-7013-9081</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018-01, Vol.6, p.38959-38966
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455929335
source IEEE Xplore Open Access Journals
subjects Algorithms
Analytical models
Autoregressive models
Autoregressive processes
Bayes methods
Bayesian analysis
Biological system modeling
Computational modeling
Computer simulation
GARCH models
Machine learning
Markov chain Monte Carlo
Markov chains
Maximum likelihood estimation
Numerical models
Parameter estimation
particle filtering
Sequential Bayesian learning
sparse recovery
State variable
Stochastic models
Time series
title A Bayesian Learning Method for Financial Time-Series Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20Learning%20Method%20for%20Financial%20Time-Series%20Analysis&rft.jtitle=IEEE%20access&rft.au=Zhu,%20Fumin&rft.date=2018-01-01&rft.volume=6&rft.spage=38959&rft.epage=38966&rft.pages=38959-38966&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2853998&rft_dat=%3Cproquest_doaj_%3E2455929335%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-a3a21e323a3f4f5638c70e4e18b37dbdf3b6a75cd27680425d7c95232ae3fdfc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455929335&rft_id=info:pmid/&rft_ieee_id=8408721&rfr_iscdi=true