Loading…
Proper‐walk connection number of graphs
This paper studies the problem of proper‐walk connection number: given an undirected connected graph, our aim is to colour its edges with as few colours as possible so that there exists a properly coloured walk between every pair of vertices of the graph, that is, a walk that does not use consecutiv...
Saved in:
Published in: | Journal of graph theory 2021-01, Vol.96 (1), p.137-159 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper studies the problem of proper‐walk connection number: given an undirected connected graph, our aim is to colour its edges with as few colours as possible so that there exists a properly coloured walk between every pair of vertices of the graph, that is, a walk that does not use consecutively two edges of the same colour. The problem was already solved on several classes of graphs but still open in the general case. We establish that the problem can always be solved in polynomial time in the size of the graph and we provide a characterization of the graphs that can be properly connected with k colours for every possible value of k. |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.22609 |