Loading…

Novel approaches for predicting efficiency in helically coiled tube flocculators using regression models and artificial neural networks

In this paper, prediction models for turbidity removal efficiency (TRE) in helically coiled tube flocculators (HCTFs) are presented. The TRE was determined by physically modelling a compact, high‐performance and low detention time clarification system composed of a HCTF coupled to a decantation syst...

Full description

Saved in:
Bibliographic Details
Published in:Water and environment journal : WEJ 2020-11, Vol.34 (4), p.550-562
Main Authors: Oliveira, D. S., Teixeira, E. C., Donadel, C. B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, prediction models for turbidity removal efficiency (TRE) in helically coiled tube flocculators (HCTFs) are presented. The TRE was determined by physically modelling a compact, high‐performance and low detention time clarification system composed of a HCTF coupled to a decantation system. The values of hydrodynamic representative parameters of the flow were determined by CFD modelling. Eighty‐four different configurations of HCTFs were evaluated. Multiple linear/non‐linear regression and artificial neural network analyses were performed. A determination coefficient (R2) of 0.81 was obtained using multiple linear regression with the geometric and hydraulic parameters. In this model, the root mean squared error (RMSE) was 3.29%. Adding hydrodynamic parameters and using the artificial neural networks, R2 reaches 0.96 and RMSE decay to 1.58%. These results indicate that the use of effective efficiency prediction models can be helpful in the design of new flocculation units and for the improvement of existing ones.
ISSN:1747-6585
1747-6593
DOI:10.1111/wej.12484