Loading…

An Evaluation Criterion to Select Temperature Measurement Positions in End-Milling

The objective of this study is to utilize measured temperatures for process monitoring in precision end-milling. Thermal expansion of machining workpiece deteriorates machining accuracy and is considered as an important phenomenon to achieve accurate end-milling process. Thermo-couples are typically...

Full description

Saved in:
Bibliographic Details
Published in:International journal of automation technology 2018-01, Vol.12 (1), p.105-112
Main Authors: Wu, Dongjin, Teramoto, Koji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this study is to utilize measured temperatures for process monitoring in precision end-milling. Thermal expansion of machining workpiece deteriorates machining accuracy and is considered as an important phenomenon to achieve accurate end-milling process. Thermo-couples are typically employed to measure the temperatures of machining workpiece. This study proposes a method to select appropriate temperature measurement positions based on variations in conscious machining evaluation. The variations in the conscious evaluation of temperature distributions on the workpiece are calculated by extending a conventional nominal machining simulation. Variations in the machining process are generated by using different combinations of model parameters for process simulations. An orthogonal array is employed to assign the parameters to reduce the combination number. An evaluation criterion to select measuring points is calculated given the temperature distributions corresponding to the parameter combinations. Feasibility of the proposed criterion is investigated by evaluating a reported temperature estimation case study. Furthermore, an adaptability of the proposed criterion to different machining situations is evaluated by comparing selected measuring points corresponding to different cutter paths.
ISSN:1881-7629
1883-8022
DOI:10.20965/ijat.2018.p0105