Loading…

DLSR: a solution to the parallax artefact in X‐ray diffraction computed tomography data

A new tomographic reconstruction algorithm is presented, termed direct least‐squares reconstruction (DLSR), which solves the well known parallax problem in X‐ray‐scattering‐based experiments. The parallax artefact arises from relatively large samples where X‐rays, scattered from a scattering angle 2...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied crystallography 2020-12, Vol.53 (6), p.1531-1541
Main Authors: Vamvakeros, A., Coelho, A. A., Matras, D., Dong, H., Odarchenko, Y., Price, S. W. T., Butler, K. T., Gutowski, O., Dippel, A.-C., Zimmermann, M., Martens, I., Drnec, J., Beale, A. M., Jacques, S. D. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new tomographic reconstruction algorithm is presented, termed direct least‐squares reconstruction (DLSR), which solves the well known parallax problem in X‐ray‐scattering‐based experiments. The parallax artefact arises from relatively large samples where X‐rays, scattered from a scattering angle 2gθ, arrive at multiple detector elements. This phenomenon leads to loss of physico‐chemical information associated with diffraction peak shape and position (i.e. altering the calculated crystallite size and lattice parameter values, respectively) and is currently the major barrier to investigating samples and devices at the centimetre level (scale‐up problem). The accuracy of the DLSR algorithm has been tested against simulated and experimental X‐ray diffraction computed tomography data using the TOPAS software. A new reconstruction approach is presented that can directly yield physico‐chemical images and overcome the parallax problem in X‐ray diffraction computed tomography experiments.
ISSN:1600-5767
0021-8898
1600-5767
DOI:10.1107/S1600576720013576